SimBiology®

Reference

<@

MATLAB

R2015a <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

SimBiology® Reference
© COPYRIGHT 2005-2015 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 2005
March 2006
May 2006
September 2006
March 2007
September 2007
October 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 14SP3+)
Updated for Version 1.0.1 (Release 2006a)
Updated for Version 2.0 (Release 2006a+)
Updated for Version 2.0.1 (Release 2006b)
Rereleased for Version 2.1.1 (Release 2007a)
Rereleased for Version 2.1.2 (Release 2007b)
Updated for Version 2.2 (Release 2007b+)
Updated for Version 2.3 (Release 2008a)
Updated for Version 2.4 (Release 2008b)
Updated for Version 3.0 (Release 2009a)
Updated for Version 3.1 (Release 2009b)
Updated for Version 3.2 (Release 2010a)
Updated for Version 3.3 (Release 2010b)
Updated for Version 3.4 (Release 2011a)
Updated for Version 4.0 (Release 2011b)
Updated for Version 4.1 (Release 2012a)
Updated for Version 4.2 (Release 2012b)
Updated for Version 4.3 (Release 2013a)
Updated for Version 4.3.1 (Release 2013b)
Updated for Version 5.0 (Release 2014a)
Updated for Version 5.1 (Release 2014b)
Updated for Version 5.2 (Release 2015a)

Functions — Alphabetical List

1

Methods — Alphabetical List

2|

Properties — Alphabetical List

3

Functions — Alphabetical List

1

Functions — Alphabetical List

1-2

groupedData

Create groupedData object

Syntax

grpData = groupedData

grpData = groupedData(tbl)

grpData = groupedData(tbl,groupVarName)

grpData = groupedData(tbl,groupVarName, independentVarName)

Description
grpData = groupedData creates an empty groupedData object.

grpData = groupedData(tbl) creates a groupedData object by copying a table

or dataset object tbl. The GroupVariableName and IndependentVariableName
properties of the grpData object are implicitly determined by looking for the first case-
insensitive match to a list of variable names of tbl (tbl .Properties.VariableNames).
For the grouping variable, the list of names is 1D, Group, I, and Run. For the
independent variable, the list of names is Time, T, and IDV. If there are no match,
GroupVariableName and IndependentVariableName are set to empty strings.

grpData = groupedData(tbl,groupVarName) sets the GroupVariableName
property of the grpData object to groupVarName. The IndependentVariableName
property is implicitly set as in the previous syntax.

grpData = groupedData(tbl,groupVarName, independentVarName)
additionally sets the IndependentVariableName property of the grpData object to
independentVarName.

Examples

Create a GroupedData Object from Dataset

This example uses data collected on 59 preterm infants given phenobarbital during
the first 16 days after birth. Each infant received an initial dose followed by one or

groupedData

more sustaining doses by intravenous bolus administration. A total of between 1 and 6
concentration measurements were obtained from each infant at times other than dose
times, for a total of 155 measurements. Infant weights and APGAR scores (a measure of
newborn health) were also recorded. Data is described in [1], a study funded by the NIH/
NIBIB grant P41-EB01975.

Load the sample data set.

load pheno.mat ds

Create a groupedData object from the data set ds.
grpbata = groupedData(ds);
Display the properties.
grpData.Properties
ans =
Description: "This dataset was generated using sbionmimport.
FileNa..."
VariableDescriptions: {}
VariableUnits: {}
DimensionNames: {"Observations® “Variables"}
UserData: []
RowNames: {}
VariableNames: {"ID* “Time®" “Dose® <“Response®}

GroupVariableName: "ID*
IndependentVariableName: "Time*

GroupVariableName and IndpendentVariableName have been automatically
assigned to "ID" and "Time" respectively.

Input Arguments

tbl — Data table
table | dataset

Data table, specified as a table or dataset.

1-3

1

Functions — Alphabetical List

1-4

groupVarName — Grouping variable name
string

Grouping variable name, specified as a string. An empty string " " indicates there is no
group variable.

independentVarName — Independent variable name
string

Independent variable name, specified as a string. An empty string " " indicates there is
no independent variable.

Output Arguments

grpData — Grouped data
groupedData object

Grouped data, returned as a groupedData object.

References

[1] Grasela Jr, T.H., Donn, S.M. (1985) Neonatal population pharmacokinetics of
phenobarbital derived from routine clinical data. Dev Pharmacol Ther. 8(6), 374—
83.

See Also
groupedData object | sbiofit | shiofitmixed | table

sbioabstractkineticlaw

sbioabstractkineticlaw

Create kinetic law definition

Syntax
abstkineticlawObj = sbioabstractkineticlaw(*Name*")
abstkineticlawObj = sbioabstractkineticlaw("Name®,"Expression®)

abstkineticlawObj = sbioabstractkineticlaw(..."PropertyName",
PropertyValue...)

Arguments
Name Enter a name for the kinetic law definition. Name must
be unique in the user-defined kinetic law library. Name is
referenced by kineticlawObj.
Expression The mathematical expression that defines the kinetic law.
Description

abstkineticlawObj = sbhioabstractkineticlaw("Name") creates an abstract
kinetic law object, with the name Name and returns it to abstkineticlawObj. Use the
abstract kinetic law object to specify a kinetic law definition.

The kinetic law definition provides a mechanism for applying a specific rate law to
multiple reactions. It acts as a mapping template for the reaction rate. The kinetic

law definition defines a reaction rate expression, which is shown in the property
Expression, and the species and parameter variables used in the expression. The
species variables are defined in the SpeciesVariables property, and the parameter
variables are defined in the ParameterVariables property of the abstract kinetic law
object.

To use the kinetic law definition, you must add it to the user-defined library with the
sbioaddtol ibrary function. To retrieve the kinetic law definitions from the user-

1-5

1

Functions — Alphabetical List

1-6

defined library, first create a root object using sbioroot, then use the command
get(rootObj .UserDefinedLibrary, “KineticLaws").

abstkineticlawObj = sbioabstractkineticlaw("Name®,"Expression®)

constructs a SimBiology” abstract kinetic law object, abstkineticlawObj with
the name "Name™ and with the expression "Expression” and returns it to
abstkineticlawObj.

abstkineticlawObj = sbioabstractkineticlaw(..."PropertyName*,
PropertyValue. . .) defines optional properties. The property name/property value
pairs can be in any format supported by the function set (for example, name-value string
pairs, structures, and name-value cell array pairs).

Additional abstkineticlawObj properties can be viewed with the get command.
abstkineticlawObj properties can be modified with the set command.

Note: If you use the sbioabstractkineticlaw constructor function to create an object
containing a reaction rate expression that is not continuous and differentiable, see “
Using Events to Address Discontinuities in Rule and Reaction Rate Expressions” before
simulating your model.

Method Summary
Property Summary

Examples

1 Create a kinetic law definition.
abstkineticlawObj = sbioabstractkineticlaw("ex_mylawl®, "(kl*s)/(k2+kl+s)™);

2 Assign the parameter and species variables in the expression.

set (abstkineticlawObj, "SpeciesVariables®, {"s"});
set (abstkineticlawObj, "ParameterVariables®, {"k1", "k2"});

3 Add the new kinetic law definition to the user-defined library.

sbioabstractkineticlaw

sbioaddtolibrary(abstkineticlawObj);

sbioaddtolibrary adds the kinetic law definition to the user-defined library. You
can verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined
SimBiology Abstract Kinetic Law Array

Index: Library: Name: Expression:
1 UserDefined ex_mylawl (k1*s)/(k2+k1+s)

4 Use the new kinetic law definition when defining a reaction's kinetic law.
modelObj = sbiomodel("cell™);

reactionObj = addreaction(modelObj, "A + B <-> B + C");
kineticlawObj = addkineticlaw(reactionObj, "ex _mylawl®);

Note: Remember to specify the SpeciesVariableNames and the
ParameterVariableNames in kineticlawObj to fully define the ReactionRate
of the reaction.

See Also

addkineticlaw | addparameter | addreaction | sbiomodel

1

Functions — Alphabetical List

1-8

sbioaccelerate

Prepare model object for accelerated simulations

Syntax

sbioaccelerate(modelObj)
sbioaccelerate(modelObj ,optionObj)

sbioaccelerate(modelObj,csObj,dvObj)

sbioaccelerate(modelObj,csObj,variantObj,doseObj)

Description

sbioaccelerate(modelObj) prepares a model object for an accelerated simulation
using its active configuration set (configset), and, if available, active variants and active
doses. A SimBiology model can contain multiple configsets with only one being active at
any given time. The active configset contains the settings to use in model preparation for
acceleration.

For accelerated simulations, use sbioaccelerate before running sbiosimulate. You
must use the same model and configset for both functions.

Rerun sbioaccelerate, before calling sbiosimulate, if you modify this model, other
than:

* Changing the variants

+ Changing values for the InitialAmount of species

* Changing the Capacity of compartments

+ Changing the Value of parameters

Note: If you are using a SimFunction object for simulations, it automatically
accelerates the model on its first function evaluation. Hence it is not necessary to run
sbioaccelerate beforehand

sbioaccelerate

sbioaccelerate(modelObj ,optionObj) uses an option object specified by
optionObj as one of the following:

+ Configset object

* Variant object

* ScheduleDose object

* RepeatDose object

* array of doses or variants

Currently, a particular dose object can only be accelerated with a single model. You
cannot use the same dose object for multiple models to be accelerated. You must create a
new copy of the dose for each model.

sbioaccelerate(modelObj,csObj,dvObj) uses a configset object csObj and dose,
variant, or an array of doses or variants specified by dvObj. If csObj is set to [], then
the function uses the active configset object.

sbioaccelerate(modelObj,csObj,variantObj,doseObj) uses a configset object
csObj, variant object or variant array specified by variantObj and dose object or dose
array specified by doseObj.

Requirements:

Microsoft® Visual Studio® 2010 run-time libraries must be available on any computer
running accelerated models generated using Microsoft Windows® SDK.

If you plan to redistribute your accelerated models to other MATLAB® users, be sure
they have the same run-time libraries.

Examples

Prepare a Model for Accelerated Simulation

Create a SimBiology model from an SMBL file.

m = sbmlimport("lotka.xml");

Prepare the model for accelerated simulation.

sbioaccelerate(m);

1-9

1 Functions — Alphabetical List

1-10

States

Simulate the model using different initial amounts of species X.

X = sbioselect(m, "type”, "species”, "name”, "x");
for i=1:5

-initialAmount = 1i;

sd(i) = sbiosimulate(m);

end

Plot the results.
sbioplot(sd)

% 1|:|5 States versus Time

=
I:I o ey o ST U O T L N N P RO T WL L N S - W N

o 2 4 a] g 10

Tirne

Accelerate Simulation Using a User-Defined Configset Object

Load a sample SimBiology model.

- [Al Runs

-- Runl
-- Run 2
-- Run 3
-- Run 4
-- Run 3

sbioaccelerate

sbioloadproject radiodecay.sbproj

Add a new configuration set using a different stop time of 15 seconds.

csObj = addconfigset(ml, "newStopTimeConfigSet”);
csObj .StopTime = 15;

Prepare the model for accelerated simulation using the new configset object.
sbioaccelerate(ml,csObj);
Simulate the model using the same configset object.

sim = sbiosimulate(ml,csObj);
sbioplot(sim)

States versus Time =[] All Runs
1000 - Run 1

400
800
700
600

500

States

400

300

200

100

Tirne

Accelerate Simulation Using an Array of Dose Obijects

Load a sample SimBiology model.

sbioloadproject radiodecay.sbproj

Add two doses of 100 molecules each for species X, scheduled at 2 and 4 seconds
respectively.

1-11

1 Functions — Alphabetical List

1-12

dObj1 = adddose(ml,"dl*, "schedule®);
dObj1._Amount = 100;
dObj1._AmountUnits = "molecule”;
dObj1._TimeUnits = "second”;
dObj1.Time = 2;

dObj1.TargetName = “unnamed.x";

dObj2 = adddose(ml,"d2", "schedule®);
dObj2_Amount = 100;
dObj2_AmountUnits = "molecule”;
dObj2_TimeUnits = "second”;
dObj2.Time = 4;

dObj2_TargetName = “unnamed.x";

Prepare the model for accelerated simulation using the array of both doses.

sbioaccelerate(ml,[dObj1,d0Obj2]);

Simulate the model using no dose or any subset of the dose array.

siml = sbiosimulate(ml);

sim2 = sbiosimulate(ml,dObjl);

sim3 = sbiosimulate(ml,dObj2);

sim4 = sbiosimulate(ml,[dObj1,d0bj2]);

Plot the results.

sbioplot(siml)

sbioaccelerate

States

1000

800

800

7aa

B0

500

400

300

200

100

States versus Time

sbioplot(sim2)

= [#] All Runs
- Run 1

1-13

1 Functions — Alphabetical List

States wersus Time = [¥] Al Runs
1200 ez Run 1

1000

800

B0

States

400

200

sbioplot(sim3)

1-14

sbioaccelerate

States

1200 -

1000

800

B0

400

200

States wersus Time

sbioplot(sim4)

= [#] Al Runs
- Run 1

1-15

Functions — Alphabetical List

1200

1000

800

B0

States

400

200

States wersus Time

Titne

Accelerate Simulation Using Configset and Dose Obijects

Load a sample SimBiology model.

sbioloadproject radiodecay.sbproj

Get the default configuration set from the model.

defaultConfigSet = getconfigset(ml, "default®);

= [#] All Runs
- Run 1

Add a scheduled dose of 100 molecules at 2 seconds for species X.

dObj = adddose(ml,"d1", "schedule®);
dObj .Amount = 100;

1-16

sbioaccelerate

dObj .AmountUnits = "molecule”;
dObj .TimeUnits = "second”;
dObj .Time = 2;

dObj .TargetName = “unnamed.x";

Prepare the model for accelerated simulation using the default configset object and added
dose object.

sbioaccelerate(ml,defaultConfigSet,dObj);

Simulate the model using the same configset and dose objects.

sim = sbiosimulate(ml,defaultConfigSet,dObj);

Plot the result.

sbioplot(sim);

1-17

1 Functions — Alphabetical List

States wersus Time = [¥] Al Runs
1200 ez Run 1

1000

800

B0

States

400

200

Titne

Accelerate Simulation Using Configset, Dose, and Variant Objects
Load a sample SimBiology model.
sbioloadproject radiodecay.sbproj

Add a new configuration set using a different stop time of 15 seconds.

csObj = ml.addconfigset("newStopTimeConfigSet™);
csObj -StopTime = 15;

Add a scheduled dose of 100 molecules at 2 seconds for species X.

dObj = adddose(ml,"d1", "schedule®);

1-18

sbioaccelerate

dObj .Amount = 100;

dObj .AmountUnits = "molecule”;
dObj .TimeUnits = "second”;
dObj .Time = 2;

dObj .TargetName = “unnamed.x";

Add a variant of species X using a different initial amount of 500 molecules.

vObj = addvariant(ml,"v1i%);
addcontent(vObj ,{"species”, "x", "InitialAmount”,500});

Prepare the model for accelerated simulation using the configset, dose, and variant
objects. In this case, the third argument of sbioaccelerate must be the variant object.

sbioaccelerate(ml,csObj,vObj,dObj);

Simulate the model using the same configset, variant, and dose objects.
sim = sbiosimulate(ml,csObj,vObj,dObj);

Plot the result.

sbioplot(sim);

1-19

1 Functions — Alphabetical List

= [#] All Runs
- Run 1

States wersus Time
g0

500

400

300

States

200

100

Titne

Input Arguments

modelObj — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object. The model minimally needs
one reaction or rate rule to be accelerated for simulations.

optionObj — Option object

configset object | variant object or array of variant objects | dose object or array of dose
objects

1-20

sbioaccelerate

Option object, specified as one of the following: configset object, variant object,
array of variant objects, scheduleDose object, repeatDose object, or array of dose
objects.

* When you accelerate the model using an array of dose objects, you can simulate the
model using any subset of the dose objects from the array.

* You can use any or no variant input arguments when running sbioaccelerate.

csObj — Configuration set object
configset object | []

Configuration set object, specified as a configset object that stores simulation-
specific information. When you specify csObj as[], sbioaccelerate uses the currently
active configset.

dvObj — Dose or variant object
dose object or array of dose objects | variant object or array of variant objects | []

Dose or variant object, specified as one of the following: scheduleDose object,
repeatDose object, array of dose objects, variant object, or array of variant
objects.

* Use [] when you want to explicitly exclude any variant objects from the
sbioaccelerate function.

* When dvObj is a dose object, sbioaccelerate uses the specified dose object as well
as any active variant objects if available.

* When dvObj is a variant object, sbioaccelerate uses the specified variant object as
well as any active dose objects if available.

variantObj — Variant object
variant object or array of variant objects | []

Variant object, specified as a variant object or array of variant objects. Use [] when
you want to explicitly exclude any variant object from sbioaccelerate.

doseObj — Dose object
dose object or array of dose objects | []

Dose object, specified as a scheduleDose object, repeatDose object, or array
of dose objects. A dose object defines additions that are made to species amounts or

1-21

1 Functions — Alphabetical List

parameter values. Use [] when you want to explicitly exclude any dose objects from
sbioaccelerate.

See Also

sbiosimulate

1-22

sbioaddtolibrary

sbioaddtolibrary

Add to user-defined library

Syntax

sbioaddtolibrary (abstkineticlawObj)
sbioaddtolibrary (unitObj)
sbioaddtolibrary (unitprefix0bj)

Arguments

abstkineticlawObj Specify the abstract kinetic law object that holds
the kinetic law definition. The Name of the kinetic
law must be unique in the user-defined kinetic law
library. Name is referenced by kineticlawObj. For
more information about creating kineticlawObj, see
sbioabstractkineticlaw.

unitObj Specify the user-defined unit to add to the library. For
more information about creating unitObj, see sbiounit.

unitprefixO0bj Specify the user-defined unit prefix to add to the library.
For more information about creating unitprefix0bj, see
sbiounitprefix.

Description

The function sbioaddtolibrary adds kinetic law definitions, units, and unit prefixes to
the user-defined library.

sbioaddtolibrary (abstkineticlawObj) adds the abstract kinetic law object
(abstkineticlawObj) to the user-defined library.

sbioaddtolibrary (unitObj) adds the user-defined unit (unitObj) to the user-
defined library.

1-23

1 Functions — Alphabetical List

sbioaddtolibrary (unitprefixObj) adds the user-defined unit prefix
(unitprefixObj) to the user-defined library.

The sbioaddtolibrary function adds any kinetic law definition, unit, or unit prefix
to the root object's UserDefinedLibrary property. These library components become
available automatically in future MATLAB sessions.

Use the kinetic law definitions in the built-in and user-defined library to construct a
kinetic law object with the method addkineticlaw.

To get a component of the built-in and user-defined libraries, use the
commands get(sbioroot, "BuiltlnLibrary™) and (get(sbioroot,
"UserDefinedLibrary®)).

To remove the library component from the user-defined library, use the function
sbioremovefromlibrary. You cannot remove a kinetic law definition being used by a
reaction.

Examples

This example shows how to create a kinetic law definition and add it to the user-defined
library.

1 Create a kinetic law definition.
abstkineticlawObj = sbioabstractkineticlaw(“ex _mylawl®, "(kl*s)/(k2+kl+s)");

2 Assign the parameter and species variables in the expression.

set (abstkineticlawObj, "SpeciesVariables®, {"s"});
set (abstkineticlawObj, "ParameterVariables®, {"k1", "k2"});

3 Add the new kinetic law definition to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

The function adds the kinetic law definition to the user-defined library. You can
verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined

SimBiology Abstract Kinetic Law Array

1-24

sbioaddtolibrary

Index: Library: Name: Expression:
1 UserDefined my lawl (k1*s)/(k2+k1+s)

4 Use the new kinetic law definition when defining a reaction's kinetic law.
modelObj = sbiomodel(“cell™);

reactionObj = addreaction(modelObj, "A + B <-> B + C%);
kineticlawObj = addkineticlaw(reactionObj, “ex_mylawl®);

Note: Remember to specify the SpeciesVariableNames and the
ParameterVariableNames in kineticlawObj to fully define the ReactionRate
of the reaction.

See Also
addkineticlaw | sbioabstractkineticlaw | sbioremovefromlibrary |
sbioroot | shiounit | sbiounitprefix

1-25

1 Functions — Alphabetical List

1-26

sbioconsmoiety

Find conserved moieties in SimBiology model

Syntax

[G, Sp] sbioconsmoiety(modelObj)

[G, Sp] = sbioconsmoiety(modelObj, alg)

H = sbioconsmoiety(modelObj, alg,"p")

H = sbioconsmoiety(modelObj, alg,"p", FormatArg)

[SI, SD, LO, NR, ND] = sbioconsmoiety(modelObj,"link")

Arguments

G An m-by-n matrix, where m is the number of conserved quantities
found and n is the number of species in the model. Each row of G
specifies a linear combination of species whose rate of change over
time is zero.

Sp Cell array of species names that labels the columns of G.

If the species are in multiple compartments, species names

are qualified with the compartment name in the form
compartmentName.speciesName. For example, nucleus.DNA,
cytoplasm.mRNA.

modelObj Model object to be evaluated for conserved moieties.

alg Specify algorithm to use during evaluation of conserved moieties.
Valid values are "qr”, "rreduce”, or "semipos”.

H Cell array of strings containing the conserved moieties.

p Prints the output to a cell array of strings.

FormatArg Specifies formatting for the output H. FormatArg should either
be a C-style format string, or a positive integer specifying the
maximum number of digits of precision used.

SI Cell array containing the names of independent species in the
model.

sbioconsmoiety

SD

Cell array containing the names of dependent species in the
model.

LO

Link matrix relating SI and SD. The link matrix L0 satisfies

ND = LO*NR. For the "link" functionality, species with their
BoundaryCondition or ConstantAmount properties set to true
are treated as having stoichiometry of zero in all reactions.

L0 is a sparse matrix. To convert it to a full matrix, use the full
function.

NR

Reduced stoichiometry matrices containing one row for each
independent species. The concatenated matrix [NR;ND] 1is
a row-permuted version of the full stoichiometry matrix of
modelObj.

NR 1s a sparse matrix. To convert it to a full matrix, use the full
function.

ND

Reduced stoichiometry matrices containing one row for each
dependent species. The concatenated matrix [NR;ND] is a row-
permuted version of the full stoichiometry matrix of model0Obj.

ND is a sparse matrix. To convert it to a full matrix, use the full
function.

Description

[G, Sp] = sbioconsmoiety(modelObj) calculates a complete set of linear
conservation relations for the species in the SimBiology model object model10bj.

sbioconsmoiety computes conservation relations by analyzing the structure of the
model object's stoichiometry matrix. Thus, sbioconsmoiety does not include species
that are governed by algebraic or rate rules.

[G, Sp] = sbioconsmoiety(modelObj, alg) provides an algorithm specification.
For alg, specify "qr*® , "rreduce” , or "semipos”.

When you specify "qr*®, sbioconsmoiety uses an algorithm based on QR
factorization. From a numerical standpoint, this is the most efficient and reliable

1-27

1 Functions — Alphabetical List

1-28

* When you specify "rreduce”, sbioconsmoiety uses an algorithm based on row
reduction, which yields better numbers for smaller models. This is the default.

* When you specify "semipos”, sbioconsmoiety returns conservation relations
in which all the coefficients are greater than or equal to 0, permitting a more
transparent interpretation in terms of physical quantities.

For larger models, the QR-based method is recommended. For smaller models, row
reduction or the semipositive algorithm may be preferable. For row reduction and

QR factorization, the number of conservation relations returned equals the row rank
degeneracy of the model object's stoichiometry matrix. The semipositive algorithm may
return a different number of relations. Mathematically speaking, this algorithm returns
a generating set of vectors for the space of semipositive conservation relations.

H = sbioconsmoiety(modelObj, alg,"p") returns a cell array of strings H
containing the conserved quantities in modelQbj.

H = sbioconsmoiety(modelObj, alg,"p", FormatArg) specifies formatting for
the output H. FormatArg should either be a C-style format string, or a positive integer
specifying the maximum number of digits of precision used.

[SI, SD, LO, NR, ND] = sbioconsmoiety(modelObj,"link") uses a QR-based
algorithm to compute information relevant to the dimensional reduction, via conservation
relations, of the reaction network in modelObj.

Examples

Example 1
This example shows conserved moieties in a cycle.

1 Create a model with a cycle. For convenience use arbitrary reaction rates, as this will
not affect the result.

modelObj = sbiomodel("cycle®);

modelObj .addreaction("a -> b","ReactionRate”,"1");
modelObj .addreaction("b -> c", "ReactionRate”,"b");
modelObj .addreaction("c -> a","ReactionRate”,"2*c");

2 Look for conserved moieties.

[0 sp] = sbioconsmoiety(modelObj)

sbioconsmoiety

g =
101 1
Sp =
.
o
for
Example 2

Explore semipositive conservation relations in the oscil lator model.

modelObj = sbmlimport(“oscillator®);
sbioconsmoiety(modelObj, "semipos™, "p”)

ans =
“pol + pol_OpA + pol_OpB + pol_OpC*
"OpB + pol_OpB + pA_OpBl1 + pA_OpB_pA + pA _OpB2*
"OpA + pol_OpA + pC_OpAl + pC_OpA2 + pC_OpA_pC-
"OpC + pol_OpC + pB_OpCl + pB_OpC2 + pB_OpC_pB*
More About
. “Conserved Moiety Determination”
See Also
getstoichmatrix

1-29

1 Functions — Alphabetical List

1-30

sbioconvertunits

Convert unit and unit value to new unit

Syntax

sbioconvertunits(Obj, “unit®)

Description

sbioconvertunits(Obj, “unit®) converts the current *Units property on
SimBiology object, Obj to the unit, unit. This function configures the *Units

property to unit and updates the corresponding value property. For example,
sbioconverunits on a speciesObj updates the InitialAmount property value and
the InitialAmountUnits property value.

Obj can be an array of SimBiology objects. Obj must be a SimBiology object that
contains a unit property. The SimBiology objects that contain a unit property are
compartment, parameter, and species objects. For example, if Obj is a species object
with InitialAmount configured to 1 and InitialAmountUnits configured to mole,
after the call to sbioconvertunits with unit specified as molecule, speciesObj
InitialAmountis 6.0221e23 and InitialAmountUnitsis molecule.

Examples

Convert the units of the initial amount of glucose from molecule to mole.
1 Create the species "glucose” and assign an initial amount of 23 molecule.

At the command prompt, type:

modelObj = sbiomodel(“cell*®);

compObj = addcompartment(modelObj, *C");

speciesObj = addspecies (compObj, “glucose®, 23, "InitialAmountUnits®, "molecule®)

SimBiology Species Array

Index: Compartment: Name: InitialAmount: InitialAmountUnits:

sbhioconvertunits

1 C glucose 23 molecule

2 Convert the InitialAmountUnits of glucose from molecule to mole

sbioconvertunits (speciesObj, "mole®)

3 Verify the conversion of units and InitialAmount value.

Units are converted from molecule to mole.

get (speciesObj, "InitialAmountUnits™)

ans =
mole

The InitialAmount value is changed.

get (speciesObj, "InitialAmount®)

ans =

3.8192e-023

More About

. sbioshowunits

See Also

sbioshowunits

1-31

1 Functions — Alphabetical List

1-32

sbiocopylibrary

Copy library to disk

Syntax

sbiocopylibrary (“kineticlaw®,'LibraryFileName')
sbiocopylibrary (“unit®,'LibraryFileName")

Description

sbiocopylibrary ("kineticlaw®, 'LibraryFileName') copies all user-defined
kinetic law definitions to the file LibraryFileName.sbklib and places the copied file
in the current directory.

sbiocopylibrary (“unit®,'LibraryFileName ") copies all user-defined units and
unit prefixes to the file LibraryFileName.sbulib.

To get the kinetic law definitions that are in the built-in or user-
defined libraries, first create a root object using sbioroot, then use the
commands get(rootObj.BuiltinLibrary, "KineticLaws") or
get(rootObj .UserDefinedLibrary, "KineticLaws").

To add a kinetic law definition to the user-defined library, use sbioaddtolibrary.

To add a unit to the user-defined library, use sbiounit followed by
sbioaddtolibrary. To add a unit prefix to the user-defined library, use
sbiounitprefix followed by sbioaddtolibrary.

Examples

Create a kinetic law definition, add it to the user-defined library, and then copy the user-
defined kinetic law library to a .sbklib file.

1 Create a kinetic law definition.

abstkineticlawObj = sbioabstractkineticlaw("mylawl”, "(kl1*s)/(k2+kl+s)");

sbiocopylibrary

2 Add the new a kinetic law definition to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

sbioaddtolibrary adds the kinetic law definition to the user-defined library. You
can verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined
SimBiology Abstract Kinetic Law Array

Index: Library: Name: Expression:
1 UserDefined my lawl (k1*s)/(k2+k1+s)

3 Copy the user-defined kinetic law library.

sbiocopylibrary (“kineticlaw®, "myLibFile™)
4 Verify with sbiowhos.

sbiowhos -kineticlaw myLibFile

See Also

sbioaddtolibrary | sbioabstractkineticlaw | sbioremovefromlibrary |
sbiounit | sbiounitprefix

1-33

1 Functions — Alphabetical List

sbiodesktop

Open SimBiology desktop for modeling and simulation

Syntax
sbiodesktop

sbiodesktop(modelObj)
sbiodesktop(File)

Input Arguments

modelObj SimBiology model object or an array of model objects.

File String specifying a file name or path and file name of an sbproj file. If
you specify only a file name, that file must be on the MATLAB search
path or in the MATLAB Current Folder.

Description
sbiodesktop opens the SimBiology desktop, which lets you:
+ Build a SimBiology model by representing reaction pathways and entering kinetic

data for the reactions.

* Import or export SimBiology models to and from the MATLAB workspace or from a
Systems Biology Markup Language (SBML) file.

+ Modify an existing SimBiology model.
+ Simulate a SimBiology model through individual or ensemble runs.
* View results from the simulation.

* Perform analysis tasks such as sensitivity analysis, parameter and species scans, and
calculation of conserved moieties.

* Create and/or modify user-defined units and unit prefixes.

+ Create and/or modify user-defined kinetic laws.

1-34

sbiodesktop

sbiodesktop(modelObj) opens the SimBiology desktop with modelObj, a SimBiology
model object. If there is a project open in the SimBiology desktop, this command adds
modelObj to the project.

sbiodesktop(File) opens the project specified by File in the SimBiology desktop.
File is a string specifying a file name or path and file name of an sbproj file. If you
specify only a file name, that file must be on the MATLAB search path or in the
MATLAB Current Folder. If a project is open in the desktop, the software replaces it with
the new project, after prompting you to save any changes.

The Parent property of a SimBiology model object is set to the SimBiology root object.
The root object contains a list of model objects that are accessible from the MATLAB
command line and from the SimBiology desktop. Because both the command line and the
desktop point to the same model object in the Root object, changes you make to the
model at the command line are reflected in the desktop, and vice versa.

Note: The sbioreset command removes all models from the root object. Therefore, this
command also removes all models from the SimBiology desktop.

Examples

Create a SimBiology model in the MATLAB workspace, and then open the SimBiology
desktop with the model:

modelObj = sbiomodel("cell*);
sbiodesktop(modelObj)

See Also

sbioroot | sbiofittool | simbiology

1-35

1 Functions — Alphabetical List

sbiodose

Construct dose object

Syntax

doseObj = sbiodose("DoseName™)

doseObj = sbiodose("DoseName®™, “DoseType™)

doseObj = sbiodose(...'PropertyName®, PropertyValue...)

Inputs

DoseName Name of the dose object.

DoseType Selects which type of dose object to construct. Enter either

"schedule”® or "repeat*

+ "schedule”creates a ScheduleDose object and defines
the dose with a time array, amount array, and rate
array.

* "repeat”creates a RepeatDose object and defines the
dose with a dose amount, number of dose repetitions, and
the time between doses.

Output Arguments
‘doseObj |ScheduleDoseorRepeatDoseobﬁmt
Description

doseObj = sbiodose("DoseName*™) constructs a SimBiology RepeatDose object
(doseObj), assigns DoseName to the property Name, and assigns []to the property
Parent.

1-36

shiodose

doseObj = sbiodose("DoseName®™, "DoseType") constructs either a SimBiology
ScheduleDose object or RepeatDose object (dose0Obj).

doseObj = sbiodose(...'PropertyName®, PropertyValue...) defines dose
object properties. You can enter the property name/property value pairs in any format
supported by the function set (for example, name-value string pairs, structures, and
name-value cell array pairs).

You can view additional doseObj properties with the get command and modify
dose0bj properties with the set command.

Examples

Increase Drug Concentration in a One-Compartment Model via First-order Dosing

This example shows how to set up a dosing regimen that follows the first-order
absorption kinetics.

Background

Suppose you have a one-compartment model with a species named drug that represents
the total amount of drug in the body. The drug is added to the body via the first-order
dosing represented by the reaction dose -> drug, with the absorption rate constant ka.
It is removed from the body via the first-order elimination represented by the reaction
drug -> null, with the elimination rate constant ke. This example shows how to set up
such a one-compartment model, the first-order absorption and elimination.

Create a One-compartment Model
Create a SimBiology model named onecomp.
ml = sbiomodel ("onecomp®);

Define the drug elimination by adding a reaction drug -> null to the model. The drug
species represents the total amount of drug in the compartment.

rl = addreaction(ml, "drug -> null™);

Note that a compartment and the species drug are automatically created, and drug is
added to the compartment. The null l species is a reserved species that acts as a sink in
this reaction.

1-37

1 Functions — Alphabetical List

1-38

Add a mass action kinetic law to the reaction. This kinetic law defines the drug
elimination to follow the first-order kinetics.

k1 = addkineticlaw(rl, "MassAction®);

Define the elimination rate parameter ke and add it to the kinetic law.
pl = addparameter(kl, “ke","Value®,1.0, "ValueUnits®,"1/hour”);

Specify the rate parameter ke as the forward rate parameter of the reaction by
setting the ParameterVariableNames property of kinetic law object k2. This allows
SimBiology to determine the reaction rate for drug -> null reaction.

kl.ParameterVariableNames = "ke";

Set up the First-order Dosing

Add a reaction that represents the drug absorption using the second species dose. It
represents an intermediate species that will be dosed directly and is required to set up
the first-order absorption kinetics.

r2 = addreaction(ml, "dose -> drug®);

Add a mass action kinetic law to the reaction. This kinetic law defines the drug
absorption to follow the first-order kinetics.

k2 = addkineticlaw(r2, "MassAction");

Define the absorption rate parameter ka and add it to the kinetic law.
p2 = addparameter(k2,“ka","Value®,0.1, "ValueUnits®, "1/hour™);

Specify the rate parameter ka as the forward rate parameter of the reaction by
setting the ParameterVariableNames property of kinetic law object k1. This allows
SimBiology to determine the reaction rate for dose -> drug reaction.

k2 .ParameterVariableNames = "ka";

Suppose you want to increase the drug concentration in the system by administering a
series of doses: 250 mg three times a day (t.i.d) for two days. Specify the amount of the
dose (Amount), the time interval between each dose (Interval), and the total number
of doses (RepeatCount). You also need to set the Active property of the dose object to

shiodose

true so that the dose will be applied to the model during simulation. RepeatCount was
set to 5, instead of 6 since it represents the number of doses after the first dose at the
default dose start time (d1.StartTime = 0).

dl = sbiodose("d1", "repeat”);

dl.Amount = 250;

dl._AmountUnits = "milligram”;

di.Interval = 8;

dl.TimeUnits = "hour”;

dl._RepeatCount = 5;
dl.Active = true;

Specify the target species of the dose object. The target must be the dose species, not the
drug species, so that the drug absorption follows the first-order kinetics.

dl.TargetName = "dose”;

Simulate the Model

Change the simulation stop time to 48 hours to match the dosing schedule.
cs = getconfigset(ml);

cs.StopTime = 48;
cs.TimeUnits = "hour”;

In addition, do not log the dose species data as you are mainly interested in monitoring
the drug species which is the drug concentration in the system. This makes visualizing
the species in a plot more convenient. To accomplish this, set the StatesTolLog property
to include the species drug only.

cs.RuntimeOptions.StatesToLog = {"drug"};

Simulate the model using the dosing schedule defined by the |d1 | dose object.
[t,sd,species] = sbiosimulate(ml,dl);

Plot Results

Plot the concentration versus the time profile of the drug in the compartment.
plot(t,sd);

legend(species, "Location”, "NorthWest");
xlabel ("Hours");

1-39

1 Functions — Alphabetical List

ylabel ("Drug Concentration®);

40 T T T T T T T T T
drug N ~
_ ~ f N {\ 4
35 _ [[[\
i \\ | l"n_‘ | I'ul | 1
Y | \ f h f \
- 'I I\'l, | Il'll f Il'nl | .
0 ™, II \\'I. | I'I" I \ I III-.
= |'. I y I "'1. I % | I"-.
2 25t AN \ \ | \ Vo
o I| .\"\ | N\ \ | \ \
= !
o] | | !)
S0 ~ ' \
O N
S 151 N | i
a [\
|
10 R]
|
| _
|
D 1 I I I I 1 I I I
15 20 25 30 35 40 45 50

0 5 10
Hours

Add a Series of Bolus Doses to a One-Compartment Model

This example shows how to add a series of bolus doses to one-compartment model.

Background

Suppose you have a one-compartment model with a species named drug that represents
the total amount of drug in the body. The drug is removed from the body via the first-
order elimination represented by the reaction drug -> null, with the elimination rate
constant ke. In other words, the drug concentration versus the time profile follows the

. . LS R N ~r . . . -
monoexponential decline Cy = Cye , where €'t is the drug concentration at time t, C'o

1-40

shiodose

1s the initial concentration, and ke is the elimination rate constant. This example shows
how to set up such a one-compartment model and administer a series of bolus doses,
namely 250 mg three times a day (tid) for two days.

Create a One-compartment Model

First create a SimBiology model named onecomp.

ml = sbiomodel ("onecomp®);

Define the elimination of the drug from the system by adding a reaction drug -> null
to the model.

rl = addreaction(ml, "drug -> null®);

The species drug is automatically created and the reaction is added to the compartment.
The nul I species is a reserved species that acts as a sink in this reaction.

Add a mass action kinetic law to the reaction. This kinetic law defines the drug
elimination to follow the first-order kinetics.

k1 = addkineticlaw(rl, "MassAction®);

Define the elimination rate parameter ke and add it to the kinetic law.

pl = addparameter(kl, "ke","Value®,1.0, "ValueUnits", "1/hour®);

Specify the rate parameter ke as the forward rate parameter of the reaction by
setting the ParameterVariableNames property of kinetic law object k1. This allows
SimBiology to determine the reaction rate for drug -> null reaction.

kl.ParameterVariableNames = "ke";

Set up a Series of Bolus Doses

Suppose you want to increase the drug concentration in the system by administering

a series of bolus doses: 250 mg three times a day (tid) for two days. Create a repeat

dose object. Specify the amount of the dose (Amount), the dose target, the time interval
between each dose (Interval), and the total number of doses (RepeatCount). You also
need to set the Active property of the dose object to true so that the dose is applied to
the model during simulation.

dl = sbiodose("d1", "repeat”);

141

1 Functions — Alphabetical List

dl.Amount = 250;
dl._AmountUnits = "milligram”;
dl.TargetName = "drug”;
di.Interval = 8;
dl.TimeUnits = "hour”;
dl._RepeatCount = 5;
dl.Active = true;

RepeatCount was set to 5, instead of 6 since it represents the number of doses after the
first dose at the default dose start time (d1.StartTime = 0).

Simulate the Model

Change the simulation stop time to 48 hours to match the dosing schedule defined by the
d1 dose object.

cs = getconfigset(ml);

cs.StopTime = 48;

cs.TimeUnits = "hour”;

[t,sd,species] = sbiosimulate(ml,dl);

Plot Results

Plot the concentration versus the time profile of the drug in the system.

plot(t,sd);

legend(species);

xlabel ("Hours");

ylabel ("Drug Concentration®);

1-42

300

drug
2850

[

=

=
T

150

Drug Concentration

=4

=]

(=]
I_

| | I \ |
1
801 1 l

25
Hours

Increase Drug Concentration in a One-Compartment Model via Zero-order Dosing
This example shows how to set up a dosing regimen that follows the zero-order
absorption kinetics.

Background

Suppose you have a one-compartment model with a species named drug that represents
the total amount of drug in the body. The drug is removed from the body via the first-

order elimination represented by the reaction drug -> null, with the elimination rate
constant ke. In other words, the drug concentration versus the time profile follows the

monoexponential decline €'t = Cye k ! where C' is the drug concentration at time t, C
1s the initial concentration, and ke is the elimination rate constant. This example shows

1-43

shiodose

1 Functions — Alphabetical List

1-44

how to set up such a one-compartment model and increase the drug concentration in the
compartment via the zero-order absorption that takes 25 hours to administer the total
dose amount of 250 mg.

Create a One-compartment Model

Create a SimBiology model named onecomp.

ml = sbiomodel ("onecomp™);

Define the elimination of the drug from the system by adding a reaction drug -> null
to the model.

rl = addreaction(ml, "drug -> null®);

The species drug is automatically created and added to the compartment. The null
species 1s a reserved species that acts as a sink in this reaction.

Add a mass action kinetic law to the reaction. This kinetic law defines the drug
elimination to follow the first-order kinetics.

k1l = addkineticlaw(rl, "MassAction");

Define the elimination rate parameter ke and add it to the kinetic law.

pl = addparameter(kl, "ke","Value®,1.0, "ValueUnits", "1/hour®);

Specify the rate parameter ke as the forward rate parameter of the reaction by
setting the ParameterVariableNames property of kinetic law object k1. This allows
SimBiology to determine the reaction rate for drug -> null reaction.

kl.ParameterVariableNames = "ke";

Set up Zero-order Dosing

To set up zero-order dosing, first create a zero-order duration parameter p2 that
represents the time it takes to administer a dose. Next, specify the amount of the dose
(Amount), the dose target (TargetName), and the name of the zero-order duration
parameter (DurationParameterName). You also need to set the Active property of the
dose object to true so that the dose is applied to the model during simulation.

p2 = addparameter(ml, "duration®, "Value®,25,"ValueUnits", "hour®);

shiodose

dl = sbiodose("d1%);

dl.Amount = 250;

dl._AmountUnits = "milligram”;

dl.TargetName = “drug”;

dl._DurationParameterName = “duration®; %Name of the duration parameter |p2]|
dl.Active = true;

Simulate the Model

Change the simulation stop time to 48 hours to see the complete time profile. Apply the
dosing schedule defined by d1 to the model during simulation.

cs = getconfigset(ml);

cs.StopTime = 48;

cs.TimeUnits = "hour”;

[t,sd,species] = sbiosimulate(ml,dl);

Plot results

Plot the concentration versus the time profile of the drug in the compartment.
plot(t,sd);

legend(species);

xlabel ("Hours");
ylabel ("Drug Concentration®);

1-45

1 Functions — Alphabetical List

12 T T T T T T T T

drug

Drug Concentration

_2 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Hours

Add an Infusion Dose to a One-Compartment Model

This example shows how to add a constant-rate infusion dose to one-compartment model.

Background

Suppose you have a one-compartment model with a species named drug that represents
the total amount of drug in the body. The drug is removed from the body via the first-
order elimination represented by the reaction drug -> null, with the elimination rate
constant ke. In other words, the drug concentration versus the time profile follows the

monoexponential decline Cy = Coe™ r, where C' is the drug concentration at time t, Cy
1s the initial concentration, and ke is the elimination rate constant. This example shows

1-46

shiodose

how to set up such a one-compartment model and add an infusion dose at a constant rate
of 10 mg/hour for the total dose amount of 250 mg.

Create a One-compartment Model

Create a SimBiology model named onecomp.

ml = sbiomodel ("onecomp™);

Define the elimination of the drug from the system by adding a reaction drug -> null
to the model.

rl = addreaction(ml, "drug -> null®);

The species drug is automatically created and added to the compartment. The null
species 1s a reserved species that acts as a sink in this reaction.

Add a mass action kinetic law to the reaction. This kinetic law defines the drug
elimination to follow the first-order kinetics.

k1 = addkineticlaw(rl, "MassAction®);

Define the elimination rate parameter ke and add it to the kinetic law.
pl = addparameter(kl, "ke","Value®,1.0, "ValueUnits", "1/hour®);

Specify the rate parameter ke as the forward rate parameter of the reaction by
setting the ParameterVariableNames property of kinetic law object k1. This allows
SimBiology to determine the reaction rate for drug -> null reaction.

kl.ParameterVariableNames = “"ke";
Set up an Infusion Dose

Specify the amount of the dose (Amount), the dose target (TargetName), and the infusion
rate (Rate). You also need to set the Active property of the dose object to true so that
the dose is applied to the model during simulation.

dl = sbiodose("d1%);

dl.Amount = 250;

dl.TargetName = "drug”;

dl.Rate = 10;

dl._RateUnits = "milligram/hour”;
dl.Active = true;

1-47

1 Functions — Alphabetical List

Simulate the Model

Change the simulation stop time to 48 hours to see the complete time course. Apply the
dosing schedule defined by d1 to the model during simulation.

cs = getconfigset(ml);

cs.StopTime = 48;

cs.TimeUnits = "hour”;

[t,sd,species] = sbiosimulate(ml,dl);

Plot results

Plot the concentration versus the time profile of the drug in the system.
plot(t,sd);

legend(species);

xlabel ("Hours");
ylabel ("Drug Concentration®);

1-48

shiodose

Drug Concentration

12 T T T T T

drug

10 — —

0 5 10 15 20 25 30 35 40 45 50
Hours

More About

. Model object
. ScheduleDose object
. RepeatDose object

See Also

adddose | getdose | removedose | copyobj | get | set

1-49

1 Functions — Alphabetical List

1-50

sbioensembleplot

Show results of ensemble run using 2-D or 3-D plots

Syntax

sbioensembleplot(simdataObj)
sbioensembleplot(simdataObj, Names)
sbioensembleplot(simdataObj, Names, Time)

FH = sbioensembleplot(simdataObj, Names)

FH = sbioensembleplot(simdataObj, Names, Time)

Arguments

simdataObj An object that contains simulation data. You can generate a
simdataObj object using the function sbioensemblerun. All
elements of simdataObj must contain data for the same states in
the same model.

Names Either a string or a cell array of strings. Names may include
qualified names such as "CompartmentName.SpeciesName "
or "ReactionName.ParameterName" to resolve ambiguities.
Specifying {} for Names plots data for all states contained in
simdataObj.

Time A numeric scalar value. If the specified Time is not an element
of the time vectors in simdataObj, then the function resamples
simdataObj as necessary using linear interpolation.

FH Array of handles to figure windows.

Description

sbioensembleplot(simdataObj) shows a 3-D shaded plot of time-varying
distribution of all logged states in the SimData array simdataObj. The
sbioensemblerun function plots an approximate distribution created by fitting a
normal distribution to the data at every time step.

sbioensembleplot

sbioensembleplot(simdataObj, Names) plots the distribution for the data specified
by Names.

sbioensembleplot(simdataObj, Names, Time) plots a 2-D histogram of the actual
data of the ensemble distribution of the states specified by Names at the particular time
point Time.

FH = sbioensembleplot(simdataObj, Names) returns an array of handles FH, to
the figure window for the 3-D distribution plot.

FH = sbioensembleplot(simdataObj, Names, Time) returns an array of handles
FH, to the figure window for the 2-D histograms.

Examples

This example shows how to plot data from an ensemble run without interpolation.

1 The project file, radiodecay.sbproj, contains a model stored in a variable called
ml. Load ml into the MATLAB workspace.
sbioloadproject("“radiodecay.sbproj®, " ml1®);

2 Change the solver of the active configuration set to be ssa. Also, adjust the

LogDecimation property on the SolverOptions property of the configuration set
to reduce the size of the data generated.

cs = getconfigset(ml, “active®);
set(cs, "SolverType®, "ssa”);
so = get(cs, “SolverOptions©);
set(so, "LogDecimation®, 10);

3 Perform an ensemble of 20 runs with no interpolation.

simdataObj = sbioensemblerun(ml, 20);
4 Create a 2-D distribution plot of the species "z" at time = 1.0.

FH1 = sbioensembleplot(simdataObj, "z", 1.0);
5 Create a 3-D shaded plot of both species.

FH2 = sbioensembleplot(simdataObj, {"x","z"});

See Also

sbioensemblerun | sbioensemblestats | sbiomodel

1-51

1 Functions — Alphabetical List

sbioensemblerun

Multiple stochastic ensemble runs of SimBiology model

Syntax

simdataObj
simdataObj
simdataObj
simdataObj
Interpolation)

sbioensemblerun(modelObj, Numruns)
sbioensemblerun(modelObj, Numruns, Interpolation)
sbioensemblerun(modelObj, Numruns, configsetObj)
sbioensemblerun(modelObj, Numruns, configsetObj,

simdataObj = sbioensemblerun(modelObj, Numruns, variantObj)
simdataObj = sbioensemblerun(modelObj, Numruns, variantObj,

Interpolation)

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,

variantObj)

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,
variantObj, Interpolation)

Arguments

simdataobj

An array of SimData objects containing simulation data
generated by sbioensemblerun. All elements of simdataObj
contain data for the same states in the same model.

modelObj

Model object to be simulated.

Numruns

Integer scalar representing the number of stochastic runs to
make.

Interpolation

String variable denoting the interpolation scheme to be used
if data should be interpolated to get a consistent time vector.
Valid values are "linear” (linear interpolation), *zoh" (zero-
order hold), or *oFF" (no interpolation). Default is "off". If
interpolation is on, the data is interpolated to match the time
vector with the smallest simulation stop time.

1-52

sbioensemblerun

configsetObj Specify the configuration set object to use in the ensemble
simulation. For more information about configuration sets, see
Configset object.

variantObj Specify the variant object to apply to the model during the
ensemble simulation. For more information about variant objects,
see Variant object.

Description

simdataObj = sbioensemblerun(modelObj, Numruns) performs a stochastic
ensemble run of the SimBiology model object (model0bj), and returns the results
in simdataObj, an array of SimData objects. The active configset and the active
variants are used during simulation and are saved in the output, SimData object
(simdataObj).

sbioensemblerun uses the settings in the active configset on the model object
(modelObj) to perform the repeated simulation runs. The SolverType property of

the active configset must be set to one of the stochastic solvers: "ssa”, "expltau”, or
"impltau®. sbioensemblerun generates an error if the SolverType property is set to
any of the deterministic (ODE) solvers.

simdataObj = sbioensemblerun(modelObj, Numruns, Interpolation)
performs a stochastic ensemble run of a model object (model0bj), and interpolates the
results of the ensemble run onto a common time vector using the interpolation scheme
(Interpolation).

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj) performs
an ensemble run of a model object (model0bj), using the specified configuration set
(configsetObj).

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,
Interpolation) performs an ensemble run of a model object (modelObj), using the
specified configuration set (configsetObj), and interpolates the results of the ensemble
run onto a common time vector using the interpolation scheme (Interpolation).

simdataObj = sbioensemblerun(modelObj, Numruns, variantObj) performs an
ensemble run of a model object (model0bj), using the variant object or array of variant
objects (variantObj).

1-53

1 Functions — Alphabetical List

1-54

simdataObj = sbioensemblerun(modelObj, Numruns, variantObj,
Interpolation) performs an ensemble run of a model object (model0Obj), using

the variant object or array of variant objects (variant0Obj), and interpolates the
results of the ensemble run onto a common time vector using the interpolation scheme
(Interpolation).

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,
variantObj) performs an ensemble run of a model object (modelObj), using the
configuration set (configsetObj), and the variant object or array of variant objects
(variantObj). If the configuration set object (configsetObj) is empty, the active
configset on the model is used for simulation. If the variant object (variant0Obj) is
empty, then no variant (not even the active variants in the model) is used for the
simulation.

simdataObj = sbioensemblerun(modelObj, Numruns, configsetObj,
variantObj, Interpolation) performs an ensemble run of a model object
(modelObj), using the configuration set (configset0bj), and the variant object or array
of variant objects (variantObj), and interpolates the results of the ensemble run onto a
common time vector using the interpolation scheme (Interpolation).

Examples

This example shows how to perform an ensemble run and generate a 2-D distribution
plot.

1 The project file, radiodecay .sbproj, contains a model stored in a variable called
ml. Load ml into the MATLAB workspace.

sbioloadproject("“radiodecay.sbproj®, " ml1®);

2 Change the solver of the active configset to be ssa. Also, adjust the LogDecimation
property on the SolverOptions property of the configuration set.

cs = getconfigset(ml, “active®);
set(cs, "SolverType®, "ssa”);
so = get(cs, °“SolverOptions®);
set(so, "LogDecimation®, 10);

Tip The LogDecimation property lets you define how often the simulation data is
recorded as output. If your model has high concentrations or amounts of species, or a

sbioensemblerun

long simulation time (for example, 600s), you can record simulation data less often
to manage the amount of data generated. Be aware that by doing so you might miss
some transitions if your model is very dynamic. Try setting LogDecimation to 10 or
more.

3 Perform an ensemble of 20 runs with linear interpolation to get a consistent time
vector.

simdata = sbioensemblerun(ml, 20, "linear™);

4 Create a 2-D distribution plot of the species "z" at a time = 1.0.

FH = sbioensembleplot(simdata, "z", 1.0);

See Also

addconfigset | getconfigset | shioensemblestats | sbioensembleplot |
setactiveconfigset | SimData object

1-55

1 Functions — Alphabetical List

1-56

sbioensemblestats

Get statistics from ensemble run data

Syntax

[t,m] = sbioensemblestats(simDataObj)
[t,m,v] = sbioensemblestats(simData0Obj)
[t,m,v,n] = sbioensemblestats(simDataObj)

Arguments

t

Vector of doubles that holds the common time vector after
interpolation.

Matrix of mean values from the ensemble data. The number

of rows in m is the length of the common time vector t after
interpolation and the number of columns is equal to the number
of species. The species order corresponding to the columns of m
can be obtained from any of the SimData objects in simDataObj
using selectbyname

simDataObj

A cell array of SimData objects, where each SimData object holds
data for a separate simulation run. All elements of simDataOb j
must contain data for the same states in the same model. When
the time vectors of the elements of simDataObj are not identical,
simDataObj is first resampled onto a common time vector (see
interpolation below).

Matrix of variance obtained from the ensemble data. v has the
same dimensions as .

Cell array of strings that holds names whose mean and variance
are returned in m and v, respectively. The number of elements in
n is the same as the number of columns of m and v. The order of
names in N corresponds to the order of columns of m and v.

names

Either a string or a cell array of strings. names may include
qualified names such as "CompartmentName.SpeciesName*"
or "ReactionName.ParameterName" to resolve ambiguities. If

sbioensemblestats

you specify empty {} for names, sbioensemblestats returns
statistics on all time courses contained in simDataObj.

interpolation String variable denoting the interpolation method to be used

if data is to be interpolated to get a consistent time vector. See
resample for a list of interpolation methods. Default is "off".
If interpolation is on, the data is interpolated to match the time
vector with the smallest simulation stop time.

Description

[t,m] = sbioensemblestats(simDatalObj) computes the time-dependent ensemble
mean M of the ensemble data simDataObj obtained by running sbioensemblerun.

[t,m,v] = sbioensemblestats(simDataObj) computes the time-dependent
ensemble mean m and variance Vv for the ensemble run data simDataObj.

[t,m,v,n] = sbioensemblestats(simDataObj) computes the time-dependent
ensemble mean m and variance v for the ensemble run data simDataObj. Each column of
m or v describes the ensemble mean or variance of some state as a function of time.

Examples

The project file, radiodecay.sbproj, contains a model stored in a variable called m1.
Load m1 into the MATLAB workspace.

1 Load a SimBiology model m1 from a SimBiology project file.

sbioloadproject(“radiodecay.sbproj®, " ml");
2 Change the solver of the active configuration set to be ssa. Also, adjust the
LogDecimation property on the SolverOptions property of the configuration set.

cs = getconfigset(ml, "active”);
set(cs, "SolverType®, "ssa’);
so = get(cs, "SolverOptions©);
set(so, "LogDecimation®, 10);

3 Perform an ensemble of 20 runs with no interpolation.

simDataObj = sbioensemblerun(ml, 20);

1-57

1 Functions — Alphabetical List

4 Get ensemble statistics for all species using the default interpolation method.

[T,M,V] = sbioensemblestats(simbataObj);

5 Get ensemble statistics for a specific species using the default interpolation scheme.

[T2,M2,V2] = sbioensemblestats(simDataObj, {"z"});

See Also

sbioensemblerun | sbioensembleplot | sbiomodel

1-58

sbiofit

sbiofit

Perform nonlinear least-squares regression

Syntax

FfitResults sbiofit(sm,grpData, responseMap,estiminfo)
fitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing)
FfitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing,
functionName)

fitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing,
functionName,options)

FfitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing,
functionName,options,variants)

FfitResults = sbiofit(_,Name,Value)

[FitResults,simdata] = sbiofit()

Description

fitResults = sbiofit(sm,grpData,responseMap,estiminfo) estimates
parameters of a SimBiology model sm using nonlinear least-squares regression.

grpData is a groupedData object specifying the data to fit. responseMap is a string
or cell array of strings that maps model components to response data in grpData.
estimatedInfo is an estimatedInfo object that defines the estimated parameters
in the model sm. fitResults is a OptimResults object or NLINResults objector a
vector of these objects.

sbiofit uses the first available estimation function among the following: Isgnonlin
(Optimization Toolbox™ required), nl inFit (Statistics and Machine Learning Toolbox™
required), or Fminsearch.

By default, each group in grpData is fit separately, resulting in group-specific parameter

estimates. If the model contains active doses and variants, they are applied during the
simulation.

1-59

1 Functions — Alphabetical List

1-60

FitResults = sbhiofit(sm,grpData,responseMap,estiminfo,dosing) uses the
dosing information specified by a matrix of SimBiology dose objects dosing instead of
using the active doses of the model sm if there is any.

FfitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing,
functionName) uses the estimation function specified by functionName. If the specified
function is unavailable, a warning is issued and the first available default function is
used.

FfitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing,
functionName,options) uses the additional options specified by options for the
function functionName.

TfitResults = sbiofit(sm,grpData,responseMap,estiminfo,dosing,
functionName,options,variants) applies variant objects specified as variants
instead of using any active variants of the model.

fitResults = sbiofit(_,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

[fitResults,simdata] = sbiofit() also returns a vector of SimData objects
simdata using any of the input arguments in the previous syntaxes.

Note:

+ sbiofit unifies sbionlinfit and sbioparamestim estimation functions. Use
sbiofit to perform nonlinear least-squares regression.

* sbiofit simulates the model using a SimFunction object, which automatically
accelerates simulations by default. Hence it is not necessary to run sbioaccelerate
before you call shiofit.

Examples

Fit a One-Compartment Model to an Individual's PK Profile
Background

This example shows how to fit an individual's PK profile data to one-compartment model
and estimate pharmacokinetic parameters.

sbiofit

Suppose you have drug plasma concentration data from an individual and want to

estimate the volume of the central compartment and the clearance. Assume the drug
concentration versus the time profile follows the monoexponential decline Cy = Cye ™" f,

where C' is the drug concentration at time t, C is the initial concentration, and ¥« is
the elimination rate constant that depends on the clearance and volume of the central

compartment ke = ClLJV,

The synthetic data in this example was generated using the following model and
parameters:

* One-compartment model with bolus dosing and first-order elimination

* Volume of the central compartment (Central) = 1.70 liter

* Clearance parameter (C1_Central) = 0.55 liter/hour

* Constant error model

Load Data and Visualize

The data is stored as a table with variables Time and Conc that represent the time
course of the plasma concentration of an individual after an intravenous bolus
administration measured at 13 different time points. The variable units for Time and
Conc are hour and milligram/liter, respectively.

clear all
load(fullfile(matlabroot, "examples®, "simbio”, "datal5.mat"))

plot(data.Time,data.Conc, "b+7)

xlabel ("Time");
ylabel ("Drug Concentration®);

1-61

1 Functions — Alphabetical List

+t

Drug Concentration
[

Convert to groupedData Format

Convert the data set to a groupedData object, which is the required data format for

the fitting function sbiofit for later use. A groupedData object also lets you set
independent variable and group variable names (if they exist). Set the units of the Time
and Conc variables. The units are optional and only required for the UnitConversion
feature, which automatically converts matching physical quantities to one consistent unit
system.

gbData = groupedData(data);

gData.Properties.VariableUnits = {"hour”,"milligram/liter"};
gbata.Properties

1-62

sbiofit

groupedData automatically set the name of the IndependentVariableName property
to the Time variable of the data.

ans =

Description:

VariableDescriptions: {}
VariableUnits: {"hour® “milligram/liter"}
DimensionNames: {"Row" “Variable"}
UserData: []
RowNames: {}
VariableNames: {"Time®" “Conc"}
GroupVariableName: **
IndependentVariableName: "Time*

Construct a One-Compartment Model

Use the built-in PK library to construct a one-compartment model with bolus dosing and
first-order elimination where the elimination rate depends on the clearance and volume
of the central compartment. Use the configset object to turn on unit conversion and
increase the solver tolerances.

pkmd = PKModelDesign;
pkcl = addCompartment(pkmd, "Central *);
pkcl.DosingType = "Bolus~;

pkcl_EliminationType "linear-clearance”;
pkcl._HasResponseVariable = true;

model construct(pkmd);
configset getconfigset(model);
configset.CompileOptions.UnitConversion = true;
configset.SolverOptions._AbsoluteTolerance = 1le-9;
configset.SolverOptions._.RelativeTolerance = le-5;

For details on creating compartmental PK models using the SimBiology® built-in library,
see “Create Pharmacokinetic Models”.

Define Dosing

Define a single bolus dose of 10 milligram given at time = 0. For details on setting up
different dosing schedules, see “Doses”.

dose = sbhiodose("dose”);

1-63

1 Functions — Alphabetical List

1-64

dose.TargetName rug_Central " ;

dose.StartTime = 0;
dose.Amount = 10;
dose.AmountUnits = "milligram”;
dose.TimeUnits = "hour”;

Map Response Data to the Corresponding Model Component

The data contains drug concentration data stored in the Conc variable. This data
corresponds to the Drug_Central species in the model. Therefore, map the data to
Drug_Central as follows.

responseMap = {"Drug_Central = Conc"};

Specify Parameters to Estimate

The parameters to fit in this model are the volume of the central compartment (Central)
and the clearance rate (Cl_Central). In this case, specify log-transformation for these
biological parameters since they are constrained to be positive. The estimatedInfo
object lets you specify parameter transforms, initial values, and parameter bounds
(optional).

paramsToEstimate
estimatedParams

{"log(Central) ", "log(Cl_Central)"};
estimatedInfo(paramsToEstimate, " InitialvValue®,[1 1]);

Estimate Parameters

Now that you have defined one-compartment model, data to fit, mapped response
data, parameters to estimate, and dosing, use sbiofit to estimate parameters.
The default estimation function that sbiofit uses will change depending on which
toolboxes are available. To see which function was used during fitting, check the
EstimationFunction property of the corresponding results object.

fitConst = shiofit(model,gData, responseMap,estimatedParams,dose)

fitConst

OptimResults with properties:

ExitFlag: 3
Output: [1x1 struct]
GroupName: [1x1 categorical]

sbiofit

Beta:
ParameterEstimates:
J:

COVB:
CovarianceMatrix:
R:

MSE:

SSE:

Weights:
EstimatedParameterNames:
ErrorModel Info:
EstimationFunction:
ErrorModel :
ErrorParameters:

[2x3 table]
[2x3 table]
[13x2 double]
[2x2 double]
[2x2 double]
[13x1 double]
0.0374
0.4119

[1
{"Central”
[1x3 table]
"Isgnonlin®
"constant”
[1x1 table]

"Cl_Central "}

Display Estimated Parameters and Plot Results

Notice the parameter estimates were not far off from the true values (1.70 and 0.55) that
were used to generate the data. You may also try different error models to see if they
could further improve the parameter estimates.

fitConst.ParameterEstimates

plot(fitConst);
ans =
Name Estimate StandardError
"Central* 1.6993 0.034805
"Cl_Central” 0.53352 0.019667

1-65

1 Functions — Alphabetical List

Indjyidual Fit

ne group
T T T T T T
& __3‘ E + QOBS1 (Cong)
\ PRED1 {Cantral Drug_Cantral)
!
II:
5|4 .
A
4 1 -
l"\.
S \
=
(]
s ar \"\ i
% \
L] \‘x
[y \
& _|}
i 2r \\\ 1
3\
1h N,]
~I .
+ T
ok i
1 1 1 1 1 1
L] 2 4 6 8 10
Time (hour)

Use Different Error Models

Try three other supported error models (proportional, combination of constant and
proportional error models, and exponential).

FfitProp = sbiofit(model,gData,responseMap,estimatedParams,dose, ...
"ErrorModel ", "proportional ") ;

FfitExp = sbiofit(model,gData,responseMap,estimatedParams,dose, ...
"ErrorModel ", "exponential *);

FfitComb = sbiofit(model,gData,responseMap,estimatedParams,dose, ...
"ErrorModel* ,"combined®);

1-66

sbiofit

Compare Sum of Squared Errors (SSE)

Compare the SSE of each fit to see which error model best fits the data. However, only
the constant and exponential error models provide the raw residuals, that is, observed
minus fitted values. The proportional and combined error models provide weighted
residuals. Thus to compare SSE of error models, first calculate the raw (unweighted)
residuals for the proportional and combined error models.

The results returned by sbiofit contain fitted values at both experimental and solver time
points. Use the Fitted function of the results object to get all the simulated (fitted) data.
Then use the resample function to extract only those fitted values at experimental time

points.

propSimData = Fitted(fitProp);

combSimData = Fitted(fitComb);

expTime = ghata.Time;

propSimData = resample(propSimData,expTime);
combSimData = resample(combSimData,expTime);

Calculate the sum of squared errors.

nlinfitPropR
nlinfitPropSSE
nlinfitCombR
nlinfitCombSSE

gbata.Conc - propSimData.Data;
sum(nlinfitPropR."2);
gbata.Conc - combSimData.Data;
sum(nlinfitCombR."2);

Construct a table of SSEs for all error models. Use the reported SSE of the constant and
exponential error models by accessing the SSE property of the corresponding results
object. For the proportional and combined error models, use the calculated SSEs.

ErrorModels = {"Constant”, "Proportional ", "Exponential ", "Combined"}";
SSE = [FitConst.SSE,nlinfitPropSSE, fitExp.SSE,nlinfitCombSSE] " ;
sseTable = table(ErrorModels,SSE)
sseTable =

ErrorModels SSE

"Constant” 0.41187

"Proportional” 1.2789

"Exponential” 0.63346

"Combined* 0.41196

1-67

1 Functions — Alphabetical List

1-68

As shown in the table, the constant and combined error models have the lowest (and
same) SSE. However, the constant error model is a better model since it uses only one
error parameter (&) whereas the combined error model uses two (a and b).

In addition, notice that the value of b from the combined error model is close to zero,
which also suggests the constant error model is better.

FfitConst.ErrorParameters

ans =

Conc 0.178

FfitComb.ErrorParameters

ans =

Conc 0.17485 0.001897

Display Estimated Parameter Values
Show the estimated parameter values of each error model.

allResults [fitConst,fitProp, FitExp, FitComb];

Error_Model = cell(4,1);
Estimated_Central = zeros(4,1);
Estimated_CIl_Central = zeros(4,1);

t = table(Error_Model ,Estimated_Central ,Estimated_Cl_Central);
for 1 = 1:height(t)

t{i,1} = {allResults(i).ErrorModel};
t{i,2} = allResults(i).ParameterEstimates.Estimate(1);
t{i,3} = allResults(i).ParameterEstimates.Estimate(2);

sbiofit

end

Tt

t =

Error_Model Estimated_Central Estimated Cl_Central

"constant” 1.6993 0.53352
"proportional " 1.8833 0.5122
"exponential” 1.7996 0.51951
"combined*® 1.6999 0.53255

Conclusion

This example showed how to estimate PK parameters, namely the volume of the central
compartment and clearance parameter of an individual, by fitting the PK profile data

to one-compartment model. You compared SSE and estimated parameter values of
different error models to see which model best explained the data. Final fitted results
suggested both the constant and combined error models provided the closest estimates to
the parameter values used to generate the data. However, the constant error model is a
better model since it uses one fewer parameter than the combined model.

Fit @ Two-Compartment Model to PK Profiles of Multiple Individuals

This example shows how to estimate pharmacokinetic parameters of multiple individuals
using a two-compartment model.

Suppose you have drug plasma concentration data from three individuals that you

want to use to estimate corresponding pharmacokinetic parameters, namely the volume
of central and peripheral compartment (Central, Peripheral), the clearance rate
(C1_Central), and intercompartmental clearance (Q12). Assume the drug concentration

versus the time profile follows the biexponential decline C, = Ae™% 4 Be , where C;

is the drug concentration at time ¢, a and b are slopes for corresponding exponential
declines.

The synthetic data set contains drug plasma concentration data measured in both central
and peripheral compartments. The data was generated using a two-compartment model
with an infusion dose and first-order elimination. These parameters were used for each
individual.

1-69

1 Functions — Alphabetical List

Central Peripheral Q12 Cl_Central
Individual 1 1.90 0.68 0.24 0.57
Individual 2 2.10 6.05 0.36 0.95
Individual 3 1.70 4.21 0.46 0.95

The data is stored as a table with variables ID, Time, CentralConc, and
PeripheralConc. It represents the time course of plasma concentrations measured
at eight different time points for both central and peripheral compartments after an
infusion dose.

clear all
load(fullfile(matlabroot, "examples”, "simbio”, "datal0_32R.mat"))

Convert the data set to a groupedData object which is the required data format for

the fitting function sbiofit for later use. A groupedData object also lets you set
independent variable and group variable names (if they exist). Set the units of the ID,
Time, CentralConc, and PeripheralConc variables. The units are optional and only
required for the UnitConversion feature, which automatically converts matching physical
quantities to one consistent unit system.

gData = groupedData(data);
gData.Properties.VariableUnits = {"", "hour™,"milligram/liter”, " milligram/liter"};
gData.Properties

ans =
Description: **
VariableDescriptions: {}
VariableUnits: {1x4 cell}
DimensionNames: {"Row" “Variable"}
UserData: []
RowNames: {}
VariableNames: {"ID® "Time" “CentralConc® “PeripheralConc"}
GroupVariableName: "ID*
IndependentVariableName: *"Time*

Create a trellis plot that shows the PK profiles of three individuals.

sbiotrellis(gbata, "ID","Time" ,{"CentralConc”, "PeripheralConc"});

1-70

- 1

D2
2571 E CantralConc
| 'lI ParipharalCanc
20 Y 110 1
I', ||II
1ﬂ'|; Vo o
/ '\'\ | \"'.
5 L 5 Y
\ \x} _ ‘ﬁ_ o
or) ___;-_, — g T -
D3
|
L |I|I
|
o
|
|
NTT—
0 10 20 30

Time

Use the built-in PK library to construct a two-compartment model with infusion dosing
and first-order elimination where the elimination rate depends on the clearance and
volume of central compartment. Use the configset object to turn on unit conversion.

pkmd

pkcl

pkcl.DosingType
pkcl.EliminationType
pkcl.HasResponseVaria

PKModelDesign;

addCompartment(pkmd, “Central ") ;
"Infusion”;
"linear-clearance”;

[I | = | R | VI 1|

le = true;
pkc2 addCompartment(pkmd, “Peripheral ") ;
model construct(pkmd);
configset

= getconfigset(model);
configset.CompileOptions.UnitConversion = true;

1-71

sbiofit

1 Functions — Alphabetical List

Assume every individual receives an infusion dose at time = 0, with a total infusion
amount of 100 mg at a rate of 50 mg/hour. For details on setting up different dosing
strategies, see “Doses”.

dose = sbiodose("dose”, "TargetName®, "Drug_Central™);
dose.StartTime = 0;

dose.Amount = 100;

dose.Rate = 50;

dose.AmountUnits = "milligram®;

dose.TimeUnits = "hour";

dose.RateUnits "milligram/hour”;

The data contains measured plasma concentrations in the central and peripheral
compartments. Map these variables to the appropriate model species, which are
Drug_Central and Drug_Peripheral.

responseMap = {"Drug_Central = CentralConc”, "Drug_Peripheral = PeripheralConc"};

The parameters to estimate in this model are the volumes of central and peripheral
compartments (Central and Peripheral), intercompartmental clearance Q12, and
clearance rate ClI_Central. In this case, specify log-transform for Central and
Peripheral since they are constrained to be positive. The estimatedInfo object lets
you specify parameter transforms, initial values, and parameter bounds (optional).

paramsToEstimate
estimatedParam

= {"log(Central)","log(Peripheral)”,"Q12","Cl_Central "};

= estimatedInfo(paramsToEstimate, " InitialvValue®,[1 1 1 1]);
Fit the model to all of the data pooled together, that is, estimate one set of parameters for
all individuals. The default estimation method that sbiofit uses will change depending
on which toolboxes are available. To see which estimation function sbioFfit used for the
fitting, check the EstimationFunction property of the corresponding results object.

pooledFit = sbiofit(model,gData, responseMap,estimatedParam,dose, "Pooled” ,true)

pooledFit
OptimResults with properties:
ExitFlag: 3

Output: [1x1 struct]

GroupName: []
Beta: [4x3 table]

1-72

sbiofit

ParameterEstimates:
J:

COVB:
CovarianceMatrix:
R:

MSE:

SSE:

Weights:
EstimatedParameterNames:
ErrorModel Info:
EstimationFunction:
ErrorModel :
ErrorParameters:

[4x3 table]
[24x4x2 double]
[4x4 double]
[4x4 double]
[24x2 double]
6.6353
291.9549

[1
{"Central”
[1x3 table]
"Isgnonlin®
"constant”
[1x1 table]

"Peripheral® ®Q12® *“Cl_Central"}

Plot the fitted results versus the original data. Although three separate plots were
generated, the data was fitted using the same set of parameters (that is, all three
individuals had the same fitted line).

plot(pooledFit);

1-73

1 Functions — Alphabetical List

smm: cllivil:lual Fit

Group 2

| ' + QBS1 [CantralCane)
30y I |] + OBS2 (ParpharalCons)

‘h | PRED1 (Cantral Drug_Cantral)
o0t | 1t]| —— PREDZ (Paripharal. Drug_Paripharal)

is |
10 ‘ }\k ‘

II ll + 1)
{:I I' - ——I_ —

Concentration

_H\ !

0 10 20 30

Time (hour)

Estimate one set of parameters for each individual and see if there is any improvement
in the parameter estimates. In this example, since there are three individuals, three sets
of parameters are estimated.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose, "Pooled”,false);
Plot the fitted results versus the original data. Each individual was fitted differently
(that is, each fitted line is unique to each individual) and each line appeared to fit well to

individual data.

plot(unpooledFit);

1-74

sbiofit

Concentration

107

Gmlﬂz cllivil:lual Fit

Group 2
'l 171 1 + QBS1 [CantralCane)
| + OBS2 (ParipharalConc)
I | ' PRED1 (Cantral Drug_Cantral)
-I-Il _Il_ll PRED2Z (Parpharal. Drug_Paripharal)
il |
| it |
\ 1+
.' . | n
jf I*‘j%;¥_7_+_ Jg*&hiiqu;:;:#
Group 3

Time (hour)
Display the fitted results of the first individual. The MSE was lower than that of the
pooled fit. This is also true for the other two individuals.

unpooledFit(l)

ans =
OptimResults with properties:

ExitFlag: 3
Output: [1x1 struct]
GroupName: [1x1 categorical]
Beta: [4x3 table]

1-75

1

Functions —

Alphabetical List

1-76

ParameterEstimates:
J:

COVB:
CovarianceMatrix:
R:

MSE:

SSE:

Weights:
EstimatedParameterNames:
ErrorModel Info:
EstimationFunction:
ErrorModel :
ErrorParameters:

[4x3 table]

[8x4x2 double]

[4x4 double]
[4x4 double]
[8x2 double]
1.9834
23.8007

1
{"Central”
[1x3 table]
"Isgnonlin®
"constant”
[1x1 table]

"Peripheral”

-Q12*

"Cl_Central "}

Generate a plot of the residuals over time to compare the pooled and unpooled fit

results. The figure indicates unpooled fit residuals are smaller than those of pooled fit
as expected. In addition to comparing residuals, other rigorous crieteria can be used to
compare the fitted results.

T =

res_

[ghata.Time;gData.Time];

res_pooled = res_pooled(:);
res_unpooled = vertcat(unpooledFit.R);
res_unpooled = res_unpooled(:);
plot(t,res_pooled, 0", "MarkerFaceCollor”®,"w", "markerEdgeColor®,"b")
hold on
plot(t,res_unpooled, 0", "MarkerFaceColor®,"b", "markerEdgeColor®, "b*)
= refline(0,0); % A reference line representing a zero residual
title("Residuals versus Time");
xlabel("Time");
ylabel ("Residuals®);
legend({"Pooled", "Unpoolled™});

refl

pooled = vertcat(pooledFit.R);

sbiofit

Residuals

Residuals versus Time

[+ o T T T T T T T
O 2 Poaoled
4t o ® Unpooled | S
D D
9+ o 4

o
I‘CID
- =
oM 0

00 oD C0
e
s _
L

otk .
o
4t ™ .
O o ol
s i
o
at i
o
_.1 D i i i i i i i
0 5 10 15 20 25 30 35 40

Time

This example showed how to perform pooled and unpooled estimations using sbiofit.
As illustrated, the unpooled fit accounts for variations due to the specific subjects in the
study, and, in this case, the model fits better to the data. However, the pooled fit returns
population-wide parameters. If you want to estimate population-wide parameters while
considering individual variations, use shiofitmixed.

Estimate Category-Specific PK Parameters for Multiple Individuals
This example shows how to estimate category-specific (such as young versus old, male

versus female), individual-specific, and population-wide parameters using PK profile
data from multiple individuals.

1-77

1 Functions — Alphabetical List

1-78

Background

Suppose you have drug plasma concentration data from 30 individuals and want

to estimate pharmacokinetic parameters, namely the volumes of central and
peripheral compartment, the clearance, and intercompartmental clearance. Assume
the drug concentration versus the time profile follows the biexponential decline

4 Tl b + . . .
Cy=Ae™ + Be r, where 't is the drug concentration at time t, and @ and b are slopes
for corresponding exponential declines.

Load Data

This synthetic data contains the time course of plasma concentrations of 30 individuals
after a bolus dose (100 mg) measured at different times for both central and peripheral
compartments. It also contains categorical variables, namely Sex and Age.

clear
load(fullfile(matlabroot, "examples®, "simbio”, "sd5_302RAgeSex.mat"))

Convert to groupedData Format

Convert the data set to a groupedData object, which is the required data format for
the fitting function sbiofit. A groupedData object also allows you set independent
variable and group variable names (if they exist). Set the units of the ID, Time,
CentralConc, PeripheralConc, Age, and Sex variables. The units are optional and
only required for the UnitConversion feature, which automatically converts matching
physical quantities to one consistent unit system.

gbata = groupedData(data);
gData.Properties._VariableUnits = {"", "hour™, "milligran/liter”,"milligram/liter®,"",""}
gData.Properties

The IndependentVariableName and GroupVariableName properties have been
automatically set to the Time and 1D variables of the data.

ans =
Description: **
VariableDescriptions: {}
VariableUnits: {1x6 cell}
DimensionNames: {"Row" “Variable"}
UserData: []
RowNames: {}

sbiofit

40

40

40 !

VariableNames: {1x6 cell}
GroupVariableName: "ID*
IndependentVariableName: *"Time*

Visualize Data

Display the response data for each individual.

sbiotrellis(gbata, "ID","Time" ,{"CentralConc”, "PeripheralConc"});

o1 D 2 D3 o 4 D 5
Il . , \ ; — CantralConc
.'_ Ir'-. :h.,_‘__ Ir'-. !'_\, ——— ParigheralCone
ID & o7 D8 D9 D 10
| | -. | -.
I\\-_ _ I\\-_ _ '5"‘-._ 'H'\-._ — ':"“c-._
D11 D12 D13 D14 D15
1 | | l |
Ik""\--—_ Pra__ 'L'\-._ . IHK _ ":l'ﬂn-._
ID 16 D17 D 18 D19 D 20

1D 21 D 22 ID 23 1D 24 ID 25
| | Il | |
- N_ A I -
D 26 D 27 ID 28 1D 29 ID 30
| ll 1 l |
P M o |\~_ [
0 1020 30 O 10 20 30 0 1020 30
Time

Set Up a Two-Compartment Model

Use the built-in PK library to construct a two-compartment model with infusion

dosing and first-order elimination where the elimination rate depends on the clearance

1-79

1 Functions — Alphabetical List

and volume of the central compartment. Use the conFigset object to turn on unit

conversion.

pkmd = PKModelDesign;

pkcl = addCompartment(pkmd, "Central ") ;
pkcl.DosingType = "Bolus”;

pkcl.EliminationType = "linear-clearance”;
pkcl.HasResponseVariable = true;

pkc2 = addCompartment(pkmd, "Peripheral) ;
model = construct(pkmd);

configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

For details on creating compartmental PK models using the SimBiology® built-in library,
see “Create Pharmacokinetic Models”.

Define Dosing

Assume every individual receives a bolus dose of 100 mg at time = 0. For details on
setting up different dosing strategies, see “Doses”.

dose = shiodose("dose”, "TargetName®, "Drug_Central ") ;
dose.StartTime = 0;

dose.Amount = 100;

dose.AmountUnits = "milligram®;

dose.TimeUnits = "hour";

Map the Response Data to Corresponding Model Components

The data contains measured plasma concentration in the central and peripheral
compartments. Map these variables to the appropriate model components, which are
Drug_Central and Drug_Peripheral.

responseMap = {"Drug_Central = CentralConc®,"Drug_Peripheral = PeripheralConc"};
Specify Parameters to Estimate

Specify the volumes of central and peripheral compartments Central and Peripheral,
intercompartmental clearance Q12, and clearance Cl_Central as parameters to
estimate. The estimatedInfo object lets you optionally specify parameter transforms,
initial values, and parameter bounds. Since both Central and Peripheral are
constrained to be positive, specify a log-transform for each parameter.

paramsToEstimate

{"log(Central)*, “log(Peripheral)”, "Q12", "Cl_Central"};
estimatedParam e

stimatedInfo(paramsToEstimate, “InitialValue®,[1 1 1 1]);

1-80

sbiofit

Concentration

o &8

o &8

Estimate Individual-Specific Parameters

Estimate one set of parameters for each individual by setting the "Pooled” name-value
pair argument to false.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose, "Pooled”,false);
Display Results

Plot the fitted results versus the original data for each individual (group).

plot(unpooledFit);

For an unpooled fit, sbioFit always returns one results object for each individual.

[y
a3
£
NS
o=
35
=
=
@

=]

=

=

.
7]

=]

=

=

(5]

C
g
a
r

@
]
£
o
[=4]
@
]
]
o
-
@
]
£
o
&

OBS1 (CantralConc)
OB52 (ParipharalCaonc)
Group 9 Group 1 PRED1 {Cantral Drug_Cantral)

r

[=]

-

f — PREDZ (Paripharal. Drug_Paripharal))

]
=
©
@
]
[
©
[
(7]
]
=
©
]
@
]
[
©
Iy
(7]
]
=
©
i

M
? ;
M

g
=
=
=
(7]
s
=
=
=
@
g
=
=
=
(7]
s
=
=
=
@
g
=
=
=4

-
-
r
=
a

g
£
©
M
@
=
=
=
B
(7]
g
£
©
B
@
=
=
=
B
(7]
g
£
©
]
o

r
r
-

r

i
-
i

g
¢
@
g
5
[
g
- Iyl
L @
E
?—ﬂ
E
: g

é

Time (hour)

1-81

1 Functions — Alphabetical List

1-82

Examine Parameter Estimates for Category Dependencies

Explore the unpooled estimates to see if there is any category-specific parameters, that
is, if some parameters are related to one or more categories. If there are any category
dependencies, it might be possible to reduce the number of degrees of freedom by
estimating just category-specific values for those parameters.

First extract the ID and category values for each ID
catParamValues = unique(gData(:,{"ID","Sex","Age"}));
Add variables to the table containing each parameter's estimate.

allParamValues
catParamValues.Central
catParamValues.Peripheral
catParamValues.Q12
catParamValues.CIl_Central

vertcat(unpooledFit_ParameterEstimates);

allParamValues.Estimate(strcmp(allParamValues.Name, "Centr:
allParamValues.Estimate(strcmp(allParamValues.Name, “Peripl
allParamValues.Estimate(strcmp(al IParamValues._Name, "Q12")°
allParamValues.Estimate(strcmp(allParamValues._.Name, "CIl_Cel

Plot estimates of each parameter for each category. gscatter requires Statistics
and Machine Learning Toolbox™. If you do not have it, use other alternative plotting
functions such as plot.

h

ylabels

plotNumber

for i = 1:4
thisParam = estimatedParam(i).Name;

figure;
{"Central”,"Peripheral®, "CI_Central®,"Q12"};
1;

% Plot for Sex category

subplot(4,2,plotNumber);

plotNumber = plotNumber + 1;

gscatter(double(catParamValues.Sex), catParamValues.(thisParam), catParamValues.Se:
ax = gca;

ax.XTick = [:

ylabel (ylabels(i));

% Plot for Age category
subplot(4,2,plotNumber);
plotNumber = plotNumber + 1;
gscatter(double(catParamValues.Age), catParamValues.(thisParam), catParamValues.Age
ax = gca;
ax.XTick = [:
ylabel (ylabels(i));
end

sbiofit

Based on the plot, it seems that young individuals tend to have higher volumes of central
and peripheral compartments (Central, Peripheral) than old invididuals (that is,
the volumes seem to be age-specific). In addition, males tend to have lower clearance

rates (CI_Central) than females but the opposite for the Q12 parameter (that is, the
clearance and Q12 seem to be sex-specific).

3 3
[4x] [4x]
£ ole * Female = 2 Oid
& Male il Young
o |, o |,
1 1
E 1.5 ':_E 1.5
g | * Femak 2 | old
E— i Male E‘ j Young
] i
Qo5 L g5
E 1.5 E 1.5
S le * Female s Ll Old
UI i Male UI i Young
O g5t O g5t
1 1
[]
™ D_a] * Female N sl Old
oy Male =] . Young
06| 06,

Estimate Category-Specific Parameters

Use the "CategoryVariableName*

which category to use during fitting. Use "Sex" as the group to fit for the clearrance

property of the estimatedInfo object to specify

Cl_Central and Q12 parameters. Use "Age” as the group to fit for the Central and

Peripheral parameters.

1-83

1 Functions — Alphabetical List

estimatedParam(l) .CategoryVariableName = "Age”;
estimatedParam(2) .CategoryVariableName = "Age”;
estimatedParam(3).CategoryVariableName = "Sex”;
estimatedParam(4) .CategoryVariableName = "Sex”;

categoryFit =

sbiofit(model,gData, responseMap,estimatedParam,dose)

When fitting by category (or group), sbiofit always returns one results object, not one
for each category level. This is because both male and female individuals are considered
to be part of the same optimization using the same error model and error parameters,
similarly for the young and old individuals.

categoryFit =

OptimResults with properties:

ExitFlag: 3
Output: [1x1 struct]
GroupName: []
Beta: [8x5 table]
ParameterEstimates: [120x6 table]
J: [240x8x2 double]
COVB: [8x8 double]
CovarianceMatrix: [8x8 double]
R: [240x2 double]
MSE: 0.4720
SSE: 222.7673
Weights: []

EstimatedParameterNames:
ErrorModel Info:
EstimationFunction:
ErrorModel :
ErrorParameters:

Plot Results

{"Central*
[1x3 table]
"Isgnonlin*
"constant”
[1x1 table]

"Peripheral®™ =Q12® ~Cl_Central"}

Plot the category-specific estimated results.

plot(categoryFit);

For the Cl_Central and Q12 parameters, all males had the same estimates, and
similarly for the females. For the Central and Peripheral parameters, all young
individuals had the same estimates, and similarly for the old individuals.

1-84

sbiofit

Concentration

o &8

o & 8

[.
23
2
NE
o
S8
S
=4
(7]

g

=

=

.
[n]

]
=

=

(=]

COBS1 (CantralConc)

OB52 (ParipharalConc)

PRED1 (Cantral Drug_Cantral)
PRED2Z (Paripharal.Drug_Paripharal)

Group 9 Group 1

r
(18
-
-
r

@
g
[
=
(=]
FGY
]
=
o
-
@
g
[
=
&
[=]

-

@
g
=
o
@
g
[
©
[
@
g
=
o
]
@
g
[
©
I
@
g
=
o
in

?
s
r

]
g
=
=
=
(7]
g
=
=
=
]
g
=
=
=
(7]
g
=
=
@
]
g
=
=
=4

-
-
-
-
-

(7]
g
c
o
i
@
]
[
=
N
(7]
g
c
o
5
@
]
[
=
B
(7]
g
c
o
]
o

r
=
r

[
g
3
]
g
5
[
g
! g
]
E
[
g
g

il
—
i
-

é

Time (hour)

Estimate Population-Wide Parameters

To better compare the results, fit the model to all of the data pooled together, that is,
estimate one set of parameters for all individuals by setting the "Pooled” name-value
pair argument to true. The warning message tells you that this option will ignore any
category-specific information (if they exist).

pooledFit = sbiofit(model,gData, responseMap,estimatedParam,dose, "Pooled” ,true);

Warning: You called SBIOFIT using the Pooled option. The CategoryVariableName
values of the ESTIMINFO input will be ignored.

1-85

1 Functions — Alphabetical List

Plot Results

Plot the fitted results versus the original data. Although a separate plot was generated
for each individual, the data was fitted using the same set of parameters (that is, all
individuals had the same fitted line).

plot(pooledFit);

[.
=]
2
NE
e
38
S
b=
(7]

g

=

=

.
(7]

g

=

=

(=]

+ OBS1 [CantralCanc)

+ OBS2 (ParipharalCanc)

PRED1 {Cantral Drug_Cantral)
PRED2Z {Paripharal. Drug_Paripharal)

r

Group 9 Group 1

(18
-
-

@
g
[
=
=]
@
]
=
©
-
@
g
[
=
&
=]

-

@
g
=
o
@
g
[
©
[
@
g
=
o
]
@
g
[
©
I
@
g
=
o
in

il
|
i
i
R

]
g
=
=
=
(7]
g
=
=
=
]
g
=
=
=
(7]
g
=
=
@
]
g
=
=
=4

@
]
=
©
i
@
g
[
=
B
@
]
=
©
5
@
g
[
=
B
@
]
=
©
]
o

-
a
-

[
g
3
]
g
5
[
g
! R
]
% EE
| ML
[
g
g

i
.
i
-

:

Time (hour)

Compare Residuals
Compare residuals of CentralConc and PeripheralConc responses for each fit.

t = gDhata.Time;

1-86

sbiofit

allResid(:,:,1)
allResid(:,:,2)
allResid(:,:,3)

pooledFit_R;
categoryFit_R;
vertcat(unpooledFit.R);

figure;
responseList = {"CentralConc®, "PeripheralConc"};
for i = 1:2
subplot(2,1,i1);
oneResid = squeeze(allResid(:,i,:));
plot(t,oneResid, "0");
refline(0,0); % A reference line representing a zero residual
title(sprintf("Residuals (%s)", responseList{i}));
xlabel ("Time");
ylabel ("Residuals®);
legend({"Pooled”, "Category-Specific”, "Unpooled"});
end

As shown in the plot, the unpooled fit produced the best fit to the data as it fit the data to
each indivdual. This was expected since it used the most number of degrees of freedom.
The category-fit reduced the number of degrees of freedom by fitting the data to two
categories (sex and age). As a result, the residuals were larger than the unpooled fit,

but still smaller than the population-fit, which estimated just one set of parameters for
all individuals. The category-fit might be a good compromise between the unpooled and
pooled fitting provided that any hierarchical model exists within your data.

1-87

1 Functions — Alphabetical List

Residuals

Residuals

1-88

Residuals (CentralConc)

20 T T T T
’ O Pooled |
10 Category-Specific
o _E E] 8 a a Unpooled i
g § ° ° N
o]
1018 I
_2 D I I I I I I I
0 5 10 15 20 25 30 35 40
Time
Residuals (PeripheralConc)
20 T T T T T T T
=] 2 Pooled |
10 Category-Specific
0 L8 E s 2 Unpoaled)
LI R
10 7
o
_2 D B I I I I I I I
0 5 10 15 20 25 30 35 40

Time

Estimate a Parameter from the Yeast G protein Model

This example uses the yeast heterotrimeric G protein model and experimental data
reported by [1]. For details about the model, see the Background section in “Parameter
Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast Heterotrimeric G

Protein Cycle”.

Load the G protein model.

sbioloadproject gprotein

Store the experimental data containing the time course for the fraction of active G

protein as reported in the reference paper [1].

sbiofit

time = [0 10 30 60 110 210 300 450 600]";
GaFrackExpt = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]";

Create a groupedData object based on the experimental data.

thl = table(time,GaFracExpt);
grpData = groupedData(tbl);

Map the appropriate model component to the experimental data. In other words, indicate
which species in the model corresponds to which response variable in the data. In

this example, map the model parameter GaFrac to the experimental data variable
GaFracExpt from grpData.

responseMap = "GaFrac = GaFracExpt”;

Use an estimatedInfo object to define the model parameter kGd as a parameter to be
estimated.

estimatedParam = estimatedInfo("kGd");

Perform the parameter estimation.

FfitResult = sbiofit(ml,grpData, responseMap,estimatedParam);
View the estimated parameter value of kGd.
fitResult._ParameterEstimates

ans =

Name Estimate StandardError

"kGd* 0.11 0.00037969

. “Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast
Heterotrimeric G Protein Cycle”

Input Arguments

sm — SimBiology model
SimBiology model object

1-89

1 Functions — Alphabetical List

1-90

SimBiology model, specified as a SimBiology model object. The active configset
object of the model contains solver settings for simulation. Any active doses and
variants are applied to the model during simulation unless specified otherwise using the
dosing and variants input arguments, respectively.

grpData — Data to fit
groupedData object

Data to fit, specified as a groupedData object.

The name of the time variable must be defined in the IndependentVariableName
property of grpData. For instance, if the time variable name is "TIME", then specify it as
follows.

grpData.Properties. IndependentVariableName = "TIME";

If the data contains more than one group of measurements, the grouping variable name
must be defined in the GroupVariableName property of grpData. For example, if the
grouping variable name is "GROUP ", then specify it as follows.

grpData.Properties.GroupVariableName = “"GROUP";
A group usually refers to a set of measurements that represent a single time course, often
corresponding to a particular individual or experimental condition.

Note: sbiofit uses the categorical function to identify groups. If any group values
are converted to the same value by categorical, then those observations are treated
as belonging to the same group. For instance, if some observations have no group
information (that is, empty string), then categorical converts empty strings to
<undefined>, and these observations are treated as one group.

responseMap — Mapping information of model components to grpData
string | cell array of strings

Mapping information of model components to grpData, specified as a string or cell array
of strings.

Each string is an equation-like expression, similar to assignment rules in SimBiology. It
contains the name (or qualified name) of a quantity (species, compartment, or parameter)
in the model sm, followed by the character "=" and the name of a variable in grpData.
For clarity, white spaces are allowed between names and "=".

sbiofit

For example, if you have the concentration data *CONC" in grpData for a species
"Drug_Central ", you can specify it as follows.

responseMap = "Drug_Central = CONC";

To unambiguously name a species, use the qualified name, which includes the name of
the compartment. To name a reaction-scoped parameter, use the reaction name to qualify
the parameter. If the name is not a valid MATLAB variable name, surround it by square
brackets such as [reaction 1].[parameter 1].

An error is issued if any (qualified) name matches two components of the same type.
However, you can use a (qualified) name that matches two components of different types,
and the function first finds the species with the given name, followed by compartments
and then parameters.

estiminfo — Estimated parameters
estimatedInfo object | vector of estimatedInfo objects

Estimated parameters, specified as an estimatedInfo object or vector of
estimatedInfo objects that defines the estimated parameters in the model sm, and
other optional information such as their initial estimates, transformations, bound
constraints, and categories. Supported transforms are log, logit, and probit.

If you do not specify Pooled name-value pair argument, sbiofit uses
CategoryVariableName property of estiminfo to decide if parameters should be
estimated for each individual, group, category, or all individuals as a whole. Use the
Pooled option to override any CategoryVariableName values. For details about
CategoryVariableName property, see estimatedInfo object.

Note: sbiofit uses the categorical function to identify groups or categories. If any
group values are converted to the same value by categorical, then those observations
are treated as belonging to the same group. For instance, if some observations have no
group information (that is, empty string as a group value), then categorical converts
empty strings to <undefined>, and these observations are treated as one group.

dosing — Dosing information
[1 | 2-D matrix of dose objects

Dosing information, specified as an empty array or 2-D matrix of dose objects
(ScheduleDose object or RepeatDose object). If empty, no doses are applied

1-91

1 Functions — Alphabetical List

1-92

during simulation, even if the model has active doses. If not empty, the matrix must have
a single row or one row per group in the data grpData. If it has a single row, same doses
are applied to all groups during simulation. If it has multiple rows, each row is applied to
a separate group, in the same order as the groups appear in grpData.

Multiple columns are allowed so that you can apply multiple dose objects to each

group. Each column of doses must reference the same components in the model sm.
Specifically, all doses (except for empty doses) in a column must have the same values
for TargetName, DurationParameterName, and LagParameterName. If some groups
require more doses than others, then fill in the matrix with dummy doses that are either
default doses or empty doses.

A default dose has default values for all properties, except for the Name property. An
empty dose has a dose amount of 0, thus having no effect on the model. Create a default
dose as follows.

dl = sbiodose("d1%);
In addition to manually constructing dose objects, if grpData has dosing information, you
can use the createDoses method to construct doses.

functionName — Estimation function name
string

Estimation function name, specified as a string. Choices are as follows.

 "nlinfit" (Statistics and Machine Learning Toolbox is required.)
* "fminunc® (Optimization Toolbox is required.)

* "fmincon" (Optimization Toolbox is required.)

+ "fminsearch”

+ "lIsgcurvefit® (Optimization Toolbox is required.)

+ "lIsgnonlin® (Optimization Toolbox is required.)

+ "patternserch” (Global Optimization Toolbox is required.)

+ "ga" (Global Optimization Toolbox is required.)

+ "particleswarm” (Global Optimization Toolbox is required.)

By default, sbiofit uses the first available estimation function among the following:
Isgnonlin, nlinfit, or fminsearch.

options — Options specific to estimation function
struct | optimoptions object

sbiofit

Options specific to the estimation function, specified as a struct or optimoptions object.

+ optimset struct for fminsearch

+ optimoptions object for Isqcurvefit, Isgnonlin, fminunc, and particleswarm
+ gaoptimset struct for ga

+ psoptimset struct for patternsearch

+ statset struct for nlinfit

See “Default Options for Estimation Algorithms” on page 1-99 for more details and
default options associated with each estimation function.

variants — Variants
[1 | vector of variant objects

Variants, specified as an empty array or vector of variant objects. If empty, no variants
are used even if the model has active variants.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "ErrorModel ®, "constant”, "UseParal lel " , true specifies a constant
error model and to run simulations in parallel during parameter estimation.

*ErrorModel ™ — Error model
"constant” (default) | cell array | categorical vector | table

Error model(s) used for estimation, specified as a string, cell array of strings, categorical
vector, or a table.

If it is a cell array or categorical vector, its length must match the number of responses in
the responseMap argument.

If it is a table, it must contain a single variable that is a column vector of error model
names. The names can be a cell array of strings or a vector of categorical variables. If
the table has more than one row, then the RowNames property must match the response
variable names specified in the right hand side of responseMap. If the table does not use
the RowNames property, the nth error is associated with the nth response.

1-93

1 Functions — Alphabetical List

1-94

If you specify only one error model, then sbiofit estimates one set of error parameter(s)
for all responses.

You can specify separate error models only if you are using these methods: Isgnonlin,
Isqcurvefit, fmincon, fminunc, fminsearch, patternsearch, ga, and
particleswarm.

There are four built-in error models. Each model defines the error using a standard

mean-zero and unit-variance (Gaussian) variable e, simulation results f, and one or two
parameters a and b.

* Tconstant®: y=f +ae
"proportional™: y=f +b|f|e
"combined": y=f+(a+b|f|)€

"exponential": y=f xexp(ae)

Note: If you specify an error model, you cannot specify weights except for the constant
error model.

"Weights™ — Weights
matrix | function handle

Weights used for estimation, specified as a matrix of real positive weights, where

the number of columns corresponds to the number of responses, or a function handle
that accepts a vector of predicted response values and returns a vector of real positive
weights.

If you specify an error model, you cannot use weights except for the constant error model.
If neither the "ErrorModel " or "Weights" is specified, by default the function uses the
constant error model with equal weights.

"Pooled" — Fit option flag
false (default) | true

Fit option flag, specifying whether to fit each individual (False) or pool all individual
data (true).

sbiofit

When true, the function performs fitting for all individuals or groups simultaneously
using the same parameter estimates, and fitResults is a scalar results object.

When false, the function fits each group or individual separately using group- or
individual-specific parameters, and fitResults is a vector of results objects with one result
for each group.

Note: Use this option to override any CategoryVariableName values of estiminfo.

"UseParallel” — Flag for parallel simulations
false (default) | true

Flag for parallel simulations during fitting, specified as true or false. If true and
Parallel Computing Toolbox™ is available, the function runs simulations in parallel.

"SensitivityAnalysis® — Flag to use parameter sensitivities fo determine gradients of
the objective function
true | false

Flag to use parameter sensitivities to determine gradients of the objective function,
specified as true or false. By default, it is true for fmincon, fminunc, Isgnonlin,
and Isqgcurvefit methods. Otherwise, it is false.

SimBiology uses the complex-step approximation method to calculate parameter
sensitivities. Such calculated sensitivities can be used to determine gradients of the
objective function during parameter estimation to improve fitting. The default behavior
of sbiofit is to use such sensitivities to determine gradients whenever the algorithm
is gradient-based and if the SimBiology model supports sensitivity analysis. For details
about the model requirements and sensitivity analysis, see “ Sensitivity Calculation”.

Output Arguments

fitResults — Estimation results
OptimResults object | NLINResults object | Vector of results objects

Estimation results, returned as a OptimResults object or NLINResults

object or a vector of these objects. Both results objects are subclasses of the
LeastSquaresResults object.

1-95

1 Functions — Alphabetical List

1-96

If the function uses nlinfit, then fitResults is a NLINResults object. Otherwise,
fitResults is an OptimResults object.

When "Pooled” is set to False, the function fits each group separately using group-
specific parameters, and fitResults is a vector of results objects with one results object for
each group.

When "Poolled” is set to true, the function performs fitting for all individuals or groups
simultaneously using the same parameter estimates, and fitResults is a scalar results
object.

When "Pooled” is not used, and CategoryVariableName values of estiminfo are
all <none>, fitResults is a single result object. This is the same behavior as setting
"Pooled” to true.

When "Pooled”® is not used, and CategoryVariableName values of estiminfo are
all <GroupVariableName>, fitResults i1s a vector of results objects. This is the same
behavior as setting "Pooled” to false.

In all other cases, fitResults is a scalar object containing estimated parameter values for
different groups or categories specified by CategoryVariableName.

simdata — Simulation results
Vector of SimData objects

Simulation results, returned as a vector of SimData objects representing simulation
results for each group or individual.

If the "Pooled” option is False, then each simulation uses group-specific parameter
values. If true, then all simulations use the same (population-wide) parameter values.

The states reported in simdata are the states that were included in the responseMap
input argument as well as any other states listed in the StatesTolLog property of the
runtime options (RuntimeOptions) of the SimBiology model sm.

More About

Objective Functions

The function sbiofit uses maximum likelihood estimation (MLE) for fitting.
Mathematically, the problem is typically formulated as the minimization of the

sbiofit

negative of the logarithm of the likelihood function. For the constant error model, this
is equivalent to the method of least-squares, which minimizes the sum of squares of the
residuals. For other error models, the objective function has additional terms. When
the error models are normally distributed, the negative log-likelihood can be written as
follows.

~InL = 2 +21n,/2m

I Log likelihood
N Number of experimental observations
¥i The ith experimental observation
£ (x:p) Predicted value of the ith observation,
' which is a function of independent
variables x; and estimated parameters p
o Standard deviation of the ith observation.

For instance, for the combined error
model y=f +(a+b|f|e, the standard

deviation is o =a +b|f].

When you use numeric weights or the weight function, the weights are assumed to be

proportional to the variance of the error, i.e., 0'1-2 =a* w; where a is the constant error

parameter. If you use weights, you cannot specify an error model except the constant
error model.

Various parameter estimation methods have different requirements on the objective
function. For some methods, the estimation of model parameters is performed
independently of the estimation of the error model parameters. The following table
summarizes the objective function F and any separate formulas used for the estimation
of error model parameters. r; is the ith residual, a and b are error model parameters, and
f; 1s the predicted value of the ith observation.

1-97

1 Functions — Alphabetical List

1-98

Method Supported Error Objective Function Error Parameter
Model Estimation
Function
Isgnonlin "constant” F =0, ;1 2 riz
a“=—) —
Isqgcurvefit N “~w
Isgnonlin Numeric weights ~ 3 2
(wi) F=—'_ a2 — iZi
Isgcurvefit \/;t N~=w
Isgnonlin "exponential " lenrl , 1 Zriz
a“=—) —
Isgcurvefit N~=w
nlinfit All F=f nlinfit also
! estimates error
parameters.
All others "constant*® F=—InL 2
a2 = in
N=w
All others proportional F=—InL e —iz - 2
N fi
All others “combined*® F=—InL Error
parameters
are included in
minimization.
All others "exponential "
> F_N(]nyi—lnf(Xi§P))2 Nl \/azzizﬁ
- z 24° +2 ! N=w
1 1
where a 1s the standard
deviation of the log-transformed
ith observation.
All others Weights F=—InL < 2
2 i
a“=—) —
N w,

sbiofit

Default Options for Estimation Algorithms

Function

Default Options

nlinfit

sbiofit uses the default options structure associated with
nlinfit, except for:

FunvValCheck = "off*"

DerivStep = max(eps™(1/3),
min(le-4,solverOptions.RelativeTolerance)), where
solverOptions property corresponds to the model’s active
configset object.

fminunc

sbiofit uses the default options structure associated with
fminunc, except for:

"off";

le-6*[Initial objective function value]
"quasi-newton”

max(eps™(1/3), SolverOptions.RelativeTo
le-6*[Initial estimates]

Display

TolFun
Algorithm
FinDiffRelStep
TypicalX

fminsearch

sbiofit uses the default options structure associated with
fminsearch, except for:

Display = "off"

TolFun = 1e-6 * f0, where fO is the initial value of objective
function.

Isqgcurvefit

Requires Optimization Toolbox.

sbiofit uses the default options structure associated with
Isqcurvefit, except for:

Display = "off"

TolFun = 1le-6 * norm(¥0), where 0 is the initial value of
objective function.

FinDiffRelStep = max(eps™(1/3),
min(le-4,solverOptions.RelativeTolerance)) , where
solverOptions property corresponds to the model’s active
configset object.

TypicalX = 1le-6 * xO0, where X0 is an array of transformed
initial estimates.

Isgnonlin

Requires Optimization Toolbox.

1-99

erance)

1 Functions — Alphabetical List

1-100

Function

Default Options

sbiofit uses the default options structure associated with
Isgnonlin, except for:

Display = "off"

TolFun = l1le-6 * norm(f0), where 0 is the initial value of
objective function.

FinDiffRelStep = max(eps™(1/3),
min(le-4,solverOptions.RelativeTolerance)) , where
solverOptions property corresponds to the model’s active
configset object.

TypicalX = 1le-6 * x0, where X0 is an array of transformed
initial estimates.

patternsearch

Requires Global Optimization Toolbox.

sbioparamestim uses the default options structure associated
with patternsearch, except for:

Display = "off"

TolFun = 1e-6 * {0, where 0 is the initial value of the
objective function.

TolMesh = 1.0e-3

Cache = "on*

MeshAccel = “on*

ga

Requires Global Optimization Toolbox.

sbioparamestim uses the default options structure associated
with ga, except for:

Display = “off"

TolFun = le-6 * T0, where fO is the initial value of objective
function.

MutationFcn = @mutationadaptfeasible

particleswarm

Requires Global Optimization Toolbox.

sbiofit uses the following default options for the particleswarm
algorithm, except for:

Display = "off"

TolFun = 1e-6 * f0, where TO is the initial value of objective
function.

“What is Nonlinear Regression?”

sbiofit

. “Fitting Options in SimBiology”

. “Maximum Likelihood Estimation”
. “Fitting Workflow for sbiofit”

. “ Sensitivity Calculation”
References

[1] Yi, T-M., Kitano, H., and Simon, M. (2003). A quantitative characterization of the
yeast heterotrimeric G protein cycle. PNAS. 100, 10764-10769.

See Also

estimatedInfo object | fmincon | fminsearch | fminunc | ga | groupedData
object | LeastSquaresResults object | Isqcurvefit | Isqgnonlin |
nlinfit | NLINResults object | OptimResults object | particleswarm |
patternsearch | sbiofitmixed

1-101

1 Functions — Alphabetical List

1-102

sbiofitmixed

Fit nonlinear mixed-effects model

Syntax

FfitResults sbiofitmixed(sm,grpData, responseMap,covEstiminfo)
FfitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,
dosing)

FfitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,
dosing, functionName)

FitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,
dosing, functionName,opt)

FitResults = sbiofitmixed(sm,grpData, responseMap,covEstiminfo,
dosing, functionName,opt,variants)

FfitResults = sbiofitmixed(, "UseParallel”,tf)

[FitResults,simDatal,simDataP] = sbiofitmixed()

Description

Note: This function requires nImefit and nImefitsa in Statistics and Machine
Learning Toolbox.

FfitResults = sbiofitmixed(sm,grpData, responseMap,covEstiminfo)
performs nonlinear mixed-effects estimation using the SimBiology model sm and returns
a NLMEResul ts object fitResults.

grpData is a groupedData object specifying the data to fit. responseMap is a string
or cell array of strings that maps model components to response data in grpData.
covEstiminfo is a CovariateModel object or an array of estimatedInfo objects that
defines the parameters to be estimated.

If the model contains active doses and variants, they are applied during the simulation.

sbiofitmixed

FfitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,
dosing) uses the dosing information specified by a matrix of SimBiology dose objects
dosing instead of using the active doses of the model sm if there are any.

FitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,
dosing, functionName) uses the estimation function specified by functionName that
must be either "nImefit” or "nImefitsa”.

FfitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,
dosing, functionName,opt) uses the additional options specified by opt for the
estimation function functionName.

FfitResults = sbiofitmixed(sm,grpData,responseMap,covEstiminfo,
dosing, functionName,opt,variants) applies variant objects specified as variants
instead of using any active variants of the model.

FitResults = sbhiofitmixed(,"UseParallel”,tf) provides an option to estimate
parameters in parallel if Parallel Computing Toolbox is available.

[FitResults,simDatal ,simDataP] = sbiofitmixed() returns a vector of
results objects fitResults, vector of simulation results simDatal using individual-specific
parameter estimates, and vector of simulation results simDataP using population
parameter estimates.

Note:

* sbiofitmixed unifies sbionlmefit and sbionlmefitsa estimation functions. Use
sbiofitmixed to perform nonlinear mixed-effects modeling and estimation.

+ sbiofitmixed simulates the model using a SimFunction object, which
automatically accelerates simulations by default. Hence it is not necessary to run
sbioaccelerate before you call sbiofitmixed.

Examples

Fit a One-Compartment PK Model to the Phenobarbital Data

This example uses data collected on 59 preterm infants given phenobarbital during
the first 16 days after birth. Each infant received an initial dose followed by one or

1-103

1 Functions — Alphabetical List

more sustaining doses by intravenous bolus administration. A total of between 1 and 6
concentration measurements were obtained from each infant at times other than dose
times, for a total of 155 measurements. Infant weights and APGAR scores (a measure of
newborn health) were also recorded. Data is described in [1], a study funded by the NIH/
NIBIB grant P41-EB01975.

Load the data.

load pheno.mat ds

Convert the dataset to a groupedData object, a container for holding tabular data
that is divided into groups. It can automatically identify commonly used variable names
as the grouping variable or independent (time) variable. Display the properties of the
data and confirm that GroupVariableName and IndependentVariableName are
correctly identified as "ID" and "TIME", respectively.

data = groupedData(ds);
data.Properties

ans =

Description:
VariableDescriptions: {}
VariableUnits: {}

DimensionNames: {"Observations® “Variables"}

UserData: []
RowNames: {}

VariableNames: {"ID" “TIME®" “DOSE®" F“WEIGHT" “APGAR" “CONC"}

GroupVariableName: "ID*
IndependentVariableName: "TIME*

Create a simple one-compartment PK model with bolus dosing and linear clearance to fit
such data. Use the PKMode IDesign object to construct the model. Each compartment is
defined by a name, dosing type, a clearance type, and whether or not the dosing requires
a lag parameter. After constructing the model, you can also get a PKMode IMap object map
that lists the names of species and parameters in the model that are most relevant for
fitting.

pkmd = PKModelDesign;
pkmd.addCompartment(“Central ", "DosingType”, "Bolus™,"EliminationType”, "linear-clearance
[onecomp, map] = pkmd.construct;

Describe the experimentally measured response by mapping the appropriate model
component to the response variable. In other words, indicate which species in the model

1-104

sbiofitmixed

corresponds to which response variable in the data. The PKMode IMap property Observed
indicates that the relevant species in the model is Drug_Central, which represents

the drug concentration in the system. The relevant data variable is CONC, which you
visualized previously.

map . Observed

ans =
"Drug_Central*®

Map the Drug_Central species to the CONC variable.

responseMap = "Drug_Central = CONC";

The parameters to estimate in this model are the volume of the central compartment
Central and the clearance rate CI_Central. The PKMode IMap property Estimated
lists these relevant parameters. The underlying algorithm of sbiofit assumes
parameters are normally distributed, but this assumption may not be true for biological
parameters that are constrained to be positive, such as volume and clearance. Specify a
log transform for the estimated parameters so that the transformed parameters follow a
normal distribution. Use an estimatedInfo object to define such transforms and initial
values (optional).

map .Estimated

ans =

"Central*®
"Cl _Central*®

Define such estimated parameters, appropriate transformations, and initial values.

estimatedParams = estimatedInfo({"log(Central)*, "log(Cl_Central) "}, InitialValue®,[1 1

Each infant received a different schedule of dosing. The amount of drug is listed in the
data variable DOSE. To specify these dosing during fitting, create dose objects from the
data. These objects use the property TargetName to specify which species in the model
receives the dose. In this example, the target species is Drug_Central, as listed by the
PKMode IMap property Dosed.

map - Dosed

ans =

1-105

1 Functions — Alphabetical List

"Drug_Central*®

Create a sample dose with this target name and then use the createDoses method of
groupedData object data to generate doses for each infant based on the dosing data
DOSE.

sampleDose = sbiodose("sample”,"TargetName®, "Drug_Central®);
doses = createDoses(data, "DOSE", " " ,sampleDose) ;

Fit the model.

[nImeResults,siml,simP] = sbiofitmixed(onecomp,data, responseMap,estimatedParams,doses,

Visualize the fitted results using individual-specific parameter estimates.

plot(nlmeResults, "ParameterType”, "individual ") ;

Individual Fit
Group 1 Group 2 Group 3 Group 4 Group 5 Group B Group 7 Group §

+ OBS1(CONC)
PRECA (Certral Drug_Central)

/
/
/
/
?
/
/
/

Group 9 Group 10 Group 11 Group 12 Group 13 Group 14 Group 15 Group 16

;
/
[
/
)
/
i
ki

Group 17 Group 18 Group 19 Group 20 Group 21 Group 22 Group 23 Group 24

/
/
/
/
/
|
/
/

Group 25 Group 26 Group 27 Group 25 Group 29 Group 30 Group 31 Group 32

l
|
/
?
[
!
|
|

Group 33 Group 34 Group 35 Group 36 Group 37 Group 35 Group 39 Group 40

Concentration

[
i
/
/
/
/
;
[

Group 41 Group 42 Group 43 Group 44 Group 45 Group 46 Group 47 Group 45

I
|
I
/
/
|
[
/

Group 49 Group 50 Group 51 Group 52 Group 53 Group 54 Group 55 Group S6

!
/
/
[
l
/
f

Group 57 Group 58 Group 59

/
/
/

[=]

200 400

o

200400

o

200 400

o

200 400

Tirme

Visualize the fitted results using population parameter estimates.

plot(nlmeResults, "ParameterType”, "population®);

1-106

sbiofitmixed

Paopulation Fit

Group 1 Group 2 Group 3 Group 4 Group 5 Group B Group 7 Group &
123 + OBS1(CONC)
et]] | | |] PREDA (Certral Drug_Certral)
Group 9 Group 10 Group 11 Group 12 Group 13 Group 14 Group 15 Group 16
Group 17 Group 18 Group 19 Group 20 Group 21 Group 22 Group 23 Group 24
100 ﬁ‘”\
a0 +
ol] b] e] | ﬁq_’;b\ +
Group 29 Group 26 Group 27 Group 25 Group 29 Group 30 Group 3 Group 32
[
*E Group 33 Group 34 Group 35 Group 36 Group 37 Group 38 Group 39 Group 40
& 100
=11}
Group 41 Group 42 Group 43 Group 44 Group 435 Group 46 Group 47 Group 48
] W e b | e e]]
Group 49 Group S0 Group 51 Group 52 Group 53 Group 54 Group 55 Group 56
100 +
50
e S [o I ey 7 S i SRR
Group 57 Group 58 Group 59
0 200 400 0 200 400 0 200 400 0 200 400

Tirne

. “Modeling the Population Pharmacokinetics of Phenobarbital in Neonates”

Input Arguments

sm — SimBiology model
SimBiology model object

SimBiology model, specified as a SimBiology model object. The active configset
object of the model contains solver settings for simulation. Any active doses and
variants are applied to the model during simulation unless specified otherwise using the
dosing and variants input arguments, respectively.

grpData — Data to fit
groupedData object

Data to fit, specified as a groupedData object.

1-107

1 Functions — Alphabetical List

1-108

The name of the time variable must be defined in the IndependentVariableName
property of grpData. For instance, if the time variable name is "TIME", then specify it as
follows.

grpData.Properties. IndependentVariableName = "TIME";

grpData must have at least two groups, and the name of grouping variable name must be
defined in the GroupVariableName property of grpData. For example, if the grouping
variable name is "GROUP ", then specify it as follows.

grpData.Properties.GroupVariableName = “"GROUP";
A group usually refers to a set of measurements that represent a single time course, often
corresponding to a particular individual or experimental condition.

Note: sbiofitmixed uses the categorical function to identify groups. If any group
values are converted to the same value by categorical, then those observations are
treated as belonging to the same group. For instance, if some observations have no
group information (that is, empty string), then categorical converts empty strings to
<undefined>, and these observations are treated as one group.

responseMap — Mapping information of model components to response data
string | cell array of strings

Mapping information of model components to response data in grpData, specified as a
string or cell array of strings.

Each string is an equation-like expression, similar to assignment rules in SimBiology. It
contains the name (or qualified name) of a quantity (species, compartment, or parameter)
in the model sm, followed by the character "=" and the name of a variable in grpData.
For clarity, white spaces are allowed between names and "=".

For example, if you have the concentration data *CONC" in grpData that corresponds to a
model species "Drug_Central ", you can specify the mapping information as follows.

responseMap = "Drug_Central = CONC";

To unambiguously name a species, use the qualified name, which includes the name of
the compartment. To name a reaction-scoped parameter, use the reaction name to qualify
the parameter. If the name is not a valid MATLAB variable name, surround it by square
brackets such as [reaction 1].[parameter 1].

sbiofitmixed

An error is issued if any (qualified) name matches two components of the same type.
However, you can use a (qualified) name that matches two components of different types,
and the function first finds the species with the given name, followed by compartments
and then parameters.

covEstiminfo — Estimated parameters
vector of estimatedInfo objects | CovariateModel object

Estimated parameters, specified as a vector of estimatedlInfo objects or a
CovariateModel object that defines the estimated parameters in the model sm, their
initial estimates (optional), and their relationship to group-specific covariates included in
grpData (optional). If this is a vector of estimatedlInfo objects, then no covariates are
used, and all parameters are estimated with group-specific random effects.

You can also specify parameter transformations if necessary. Supported transforms
are log, logit, and probit. For details, see estimatedInfo object and
CovariateModel object.

If covEstiminfo is a vector of estimatedlInfo objects, the CategoryVariableName
property of each of these objects is ignored.

dosing — Dosing information
[1 | 2-D matrix of dose objects

Dosing information, specified as an empty array or 2-D matrix of dose objects
(ScheduleDose object or RepeatDose object). If empty, no doses are applied
during simulation, even if the model has active doses. If not empty, the matrix must have
a single row or one row per group in the data grpData. If it has a single row, the same
doses are applied to all groups during simulation. If it has multiple rows, each row is
applied to a separate group, in the same order as the groups appear in grpData.

Multiple columns are allowed so that you can apply multiple dose objects to each

group. Each column of doses must reference the same components in the model sm.
Specifically, all doses (except for empty doses) in a column must have the same values
for TargetName, DurationParameterName, and LagParameterName. If some groups
require more doses than others, then fill in the matrix with dummy doses that are either
default doses or empty doses.

A default dose has default values for all properties, except for the Name property. An

empty dose has a dose amount of 0, thus having no effect on the model. Create a default
dose as follows.

1-109

1 Functions — Alphabetical List

1-110

dl = sbiodose("d1%);
In addition to manually constructing dose objects, if grpData has dosing information, you
can use the createDoses method of groupedData object grpData to construct doses.

functionName — Estimation function name
string

Estimation function name, specified as a string. Choices are "nImefit" or
"nlmefitsar.

opt — Options specific to estimation function
struct

Options specific to the estimation function, specified as a structure. The structure
contains fields and default values that are the name-value pair arguments accepted by
nImefit and nImefitsa, except the following that are not supported.

* "FEConstDesign”

* "FEGroupDesign’

* "FEObsDesign*

* "FEParamsSelect*

* "ParamTransform®

* "REConstDesign”

* "REGroupDesign®

* "REObsDesign*

* "Vectorization®

"REParamsSelect” is only supported when covEstiminfo is a vector of estimatedInfo
objects.

Use the statset function only to set the "Options” field of the opt structure as follows.
opt.Options = statset("Display”,"iter”,"TolX",1e-3, "TolFun®,1le-3);

For other supported name-value pair arguments (see nImefit and nlmefitsa), set
them as follows.

opt._ErrorModel = “proportional”;
opt.ApproximationType = “LME";

sbiofitmixed

variants — Variants
[1 | vector of variant objects

Variants, specified as an empty array or vector of variant objects. If empty, no variants
are used even if the model has active variants.

tf — "UseParallel " option
true | false

"UseParallel " option, specified as true or false. If true, and Parallel Computing
Toolbox is available, the function performs parameter estimation in parallel.

Output Arguments

fitResults — Estimation results
NLMEResults object

Estimation results, returned as an NLMEResults object.

simDatal — Simulation results
vector of SimData objects

Simulation results, returned as a vector of SimData objects representing simulation
results for each group (or individual) using fixed-ef